Obrabotka Metallov 2020 Vol. 22 No. 2

OBRABOTKAMETALLOV Vol. 22 No. 2 2020 156 MATERIAL SCIENCE 77. Krajewski P.E., Allison J.E., Jones J.W. The effect of SiC particle reinforcement on the creep behavior of 2080 aluminum. Metallurgical and Materials Transactions A , 1997, vol. 28, iss. 3, pp. 611–620. DOI: 10.1007/ s11661-997-0046-1. 78. Zong B.Y., Derby B. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite. Acta Materialia , 1997, vol. 45, iss. 1, pp. 41–49. DOI: 10.1016/S1359-6454(96)00171-1. 79. Wakashima K., Moriyama T., Mori T. Steady-state creep of a particulate SiC/6061 Al composite. Acta Materialia , 2000, vol. 48, iss. 4, pp. 891–901. DOI: 10.1016/S1359-6454(99)00386-9. 80. Fernández R., González-Doncel G. Threshold stress and load partitioning during creep of metal matrix composites. Acta Materialia , 2008, vol. 56, iss. 11, pp. 2549–2562. DOI: 10.1016/j.actamat.2008.01.037. 81. Nieh T.G. Creep rupture of a silicon carbide reinforced aluminum composite. Metallurgical Transactions A , 1984, vol. 15, iss. 1, pp. 139–146. DOI: 10.1007/BF02644396. 82. Daehn G.S., González-Doncel G. Deformation of whisker-reinforced metal-matrix composites under changing temperature conditions. Metallurgical Transactions A , 1989, vol. 20, iss. 11, pp. 2355–2368. DOI: 10.1007/ BF02666670. 83. Park K.T., Lavernia E.J., Mohamed F.A. High temperature creep of silicon carbide particulate reinforced aluminum. Acta Metallurgica et Materialia , 1990, vol. 38, iss. 11, pp. 2149–2159. DOI: 10.1016/0956- 7151(90)90082-R. 84. Park K.T., Mohamed F.A. Creep strengthening in a discontinuous SiC-Al composite. Metallurgical and Materials Transactions A , 1995, vol. 26, pp. 3119–3129. DOI: 10.1007/BF02669441. 85. Fernández R., González-Doncel G. In fl uence of processing route and reinforcement content on the creep fracture parameters of aluminium alloy metal matrix composites. Journal of Alloys and Compounds , 2009, vol. 478, iss. 1–2, pp. 133–138. DOI: 10.1016/j.jallcom.2008.11.062. 86. Khalifa T.A., Mahmoud T.S. Elevated temperature mechanical properties of Al alloy AA6063/SiCp MMCs. Proceedings of the World Congress on Engineering 2009, London, U.K., 1–3 July 2009, vol. 2, pp. 1557–1562. ISBN: 978-988-18210-1-0. 87. Li Y., Langdon T.G. A comparison of the creep properties of an Al-6092 composite and the unreinforced matrix alloy. Metallurgical and Materials Transactions A , 1998, vol. 29, iss. 10, pp. 2523–2531. DOI: 10.1007/ s11661-998-0224-9. 88. Zhu S.J., Peng L.M., Ma Z.Y., Bi J., Wang F.G., Wang Z.G. High temperature creep behavior of SiC whisker- reinforced AlFeVSi composite. Materials Science and Engineering: A , 1996, vol. 215, iss. 1–2, pp. 120–124. DOI: 10.1016/0921-5093(96)80015-3. 89. Č adek J., Kucha ř ová K., Zhu S.J. High temperature creep behaviour of an Al-8.5Fe-1.3V-1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A , 2000, vol. 283, iss. 1–2, pp. 172–180. DOI: 10.1016/S0921-5093(00)00706-1. 90. Č adek J., Kucha ř ová K., Zhu S.J. Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates. Materials Science and Engineering: A , 2001, vol. 297, iss. 1–2, pp. 176–184. DOI: 10.1016/ S0921-5093(00)01258-2. 91. Č adek J., Kucha ř ová K., Zhu S.J. Creep behaviour of an Al–8.5Fe–1.3V–1.7Si–15SiCp composite at temperatures ranging from 873 to 948 K. Materials Science and Engineering: A , 2002, vol. 328, iss. 1–2, pp. 283– 290. DOI: 10.1016/S0921-5093(01)01705-1. 92. Ma Z.Y., Tjong S.C. High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–si alloy composite. Materials Science and Engineering: A , 2000, vol. 278, iss. 1–2, pp. 5–15. DOI: 10.1016/S0921- 5093(99)00613-9. 93. Liao J., Tan M.J., Sridhar I. Creep behavior of spray-deposited AlLi/SiCp composite. Materials Science and Engineering: A , 2010, vol. 527, iss. 18–19, pp. 4906–4913. DOI: 10.1016/j.msea.2010.04.040. 94. Fernández R., González-Doncel G. Load partitioning during creep of powder metallurgy metal matrix composites and Shear-Lag model predictions. Materials Science and Engineering A , 2009, vol. 500, iss. 1–2, pp. 109–113. DOI: 10.1016/j.msea.2008.09.041. 95. Chumakov E.V. Analiz protsessa deformatsionnogo uprochneniya na neustanovivsheisya stadii polzuchesti [Analyzing the process of strain hardening at the transient creep stage]. Nauchno-tekhnicheskie vedomosti Sankt- Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta = St. Petersburg Polytechnic University Journal of Engineering Science and Technology , 2014, no. 3 (202), pp. 154–160.

RkJQdWJsaXNoZXIy MTk0ODM1