Obrabotka Metallov 2020 Vol. 22 No. 3

OBRABOTKAMETALLOV Vol. 22 No. 3 2020 30 TECHNOLOGY 22. Cunningham C.R., Flynn J.M., Shokrani A., Dhokia V., Newman S.T. Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing , 2018, vol. 22, pp. 672–686. DOI: 10.1016/j. addma.2018.06.020. 23. Brandl E., Michailov V., Viehweger B., Leyens C. Deposition of Ti-6Al-4V using laser and wire. Part I: Microstructural properties of single beads. Surface and Coatings Technology , 2011, vol. 206, pp. 1120–1129. DOI: 10.1016/j.surfcoat.2011.07.095. 24. Brandl E., Michailov V., Viehweger B., Leyens C. Deposition of Ti-6Al-4V using laser and wire. Part II: Hardness and dimensions of single beads. Surface and Coatings Technology , 2011, vol. 206, pp. 1130–1141. DOI: 10.1016/j.surfcoat.2011.07.094. 25. Brandl E., Palm F., Michailov V., Viehweger B., Leyens C. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire. Materials and Design , 2011, vol. 32, pp. 4665– 4675. DOI: 10.1016/j.matdes.2011.06.062. 26. Ding Y., Akbari M., Kovacevic R. Process planning for laser wire-feed metal additive manufacturing system. International Journal of Advanced Manufacturing Technology , 2018, vol. 95, iss. 1–4, pp. 355–365. DOI: 10.1007/ s00170-017-1179-z. 27. Chekir N., Sixsmith J.J., Tollett R., Brochu M. Laser wire deposition of a large Ti-6Al-4V space component. Welding Journal , 2019, vol. 98, iss. 6, pp. 172-s–180-s. DOI: 10.29391/2019.98.014. 28. Gibson B.T., Bandari Y.K., Richardson B.S., Henry W.C., Vetland E.J., Sundermann T.W., Love L.J. Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V. Additive Manufacturing , 2020, vol. 32, p. 100993. DOI: 10.1016/j.addma.2019.100993. 29. Tarasov S.Yu., Filippov A.V., Savchenko N.L., Fortuna S.V., Rubtsov V.E., Kolubaev E.A., Psakhie S.G. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel. International Journal of Advanced Manufacturing Technology , 2018, vol. 99, iss. 9–12, pp. 2353–2363. DOI: 10.1007/s00170-018-2643-0. 30. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source. Welding in the World , 2018, vol. 62, iss. 2, pp. 267–275. DOI: 10.1007/s40194-017-0537-7. 31. Wanjara P.,Watanabe K., Formanoir C. de, Yang Q., Bescond C., Godet S., BrochuM., Nezaki K., Gholipour J., Patnaik P. Titanium alloy repair with wire-feed electron beam additive manufacturing technology. Advances in Materials Science and Engineering , 2019, vol. 2019, p. 3979471. DOI: 10.1155/2019/3979471. 32. Martina F., Mehnen J., Williams S.W., Colegrove P., Wang F. Investigation of the bene fi ts of plasma deposition for the additive layer manufacture of Ti-6Al-4V. Journal of Materials Processing Technology , 2012, vol. 212, pp. 1377–1386. DOI: 10.1016/j.jmatprotec.2012.02.002. 33. Zhang J., Wang X., Paddea S., Zhang X. Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress. Materials and Design , 2016, vol. 90, pp. 551– 561. DOI: 10.1016/j.matdes.2015.10.141. 34. Lin J., Lv Y., Liu Y., Sun Z., Wang K., Li Z., Wu Y., Xu B. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. Journal of the Mechanical Behavior of Biomedical Materials , 2017, vol. 69, pp. 19–29. DOI: 10.1016/j.jmbbm.2016.12.015. 35. Hönnige J.R., Colegrove P., Williams S. Improvement of microstructure and mechanical properties in wire + arc additively manufactured Ti-6Al-4V with machine hammer peening, Procedia Engineering , 2017, vol. 216, pp. 8–17. DOI: 10.1016/j.proeng.2018.02.083. 36. Lin J., Lv Y., Guo D., Wu X., Li Z., Liu C., Guo B., Xu G., Xu B. Enhanced strength and ductility in thin Ti-6Al-4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing. Materials Science and Engineering A , 2019, vol. 759, pp. 288–297. DOI: 10.1016/j.msea.2019.05.025. 37. Lin J., Lv Y., Liu Y., Sun Z., Wang K., Li Z., Wu Y., Xu B. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. Journal of the mechanical behavior of biomedical materials , 2017, vol. 69, pp. 19–29. DOI: 10.1016/j.jmbbm.2016.12.015. 38. Ríos S., Colegrove P.A., Williams S.W. Metal transfer modes in plasma wire+arc additive manufacture. Journal of Materials Processing Technology , 2019, vol. 264, pp. 45–54. DOI: 10.1016/j.jmatprotec.2018.08.043. 39. Biswal R., Zhang X., Shamir M., Mamun A.A., Awd M., Walther F., Syed A.K. Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4V. Additive Manufacturing , 2019, vol. 28, pp. 517–527. DOI: 10.1016/j.addma.2019.04.026. 40. McAndrew A.R., Rosales M.A., Colegrove P.A., Hönnige J.R., Ho A., Fayolle R., Eyitayo K., Stan I., Sukrongpang P., Crochemore A., Pinter Z. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured

RkJQdWJsaXNoZXIy MTk0ODM1