Obrabotka Metallov 2020 Vol. 22 No. 3

OBRABOTKAMETALLOV Vol. 22 No. 3 2020 94 MATERIAL SCIENCE 3. Zagirov N.N., Sidelnikov S.B., Sokolov R.E., Loginov Yu.N. Sravnitel’nyi analiz tekhnologii izgotovleniya svarochnoi provoloki iz evtekticheskogo silumina s primeneniem sovmeshchennykh metodov obrabotki [Comparative analysis of technologies for the manufacture of welding wire from eutectic silumin using combined processing methods]. Tsvetnye Metally = Non-Ferrous Metals , 2017, no. 4, pp. 86–92. DOI: 10.17580/tsm.2017.04.13. 4. Loginov Yu.N., Bourkine S.P., Babailov N.A. Cinematics and volume deformations during roll-press briquetting. Journal of Materials Processing Technology , 2001, vol. 118, no. 1–3, pp. 151–157. DOI: 10.1016/S0924-0136(01)00880-9. 5. Megahed M., Saber D., Aguva M.A. Modelirovanie protsessa mekhanicheskogo iznashivaniya kompozitnogo Al-Si/Al2O3 materiala s metallicheskoi matritsei [Modeling of the mechanical wear process of a composite Al-Si/Al 2 O 3 material with a metal matrix]. Fizika metallov i metallovedenie = The Physics of Metals andMetallography , 2019, vol. 120, no. 10, pp. 1072–1082. DOI 10.1134/S0015323019100085. (In Russian). 6. Wang H.-T., ChuM.-S., ZhaoW., Liu Z.-G. Effect of process parameters on the compressive strength of iron coke hot briquette. Dongbei Daxue Xuebao. Journal of Northeastern University , 2016, vol. 37, iss. 6, pp. 810–814. DOI: 10.3969/j. issn.1005-3026.2016.2016.06.011. 7. Babailov N.A., Loginov Yu.N., Polyansky L.I., Pervukhina D.N. Primenenie valkovogo briketirovaniya dlya uti- lizatsii alyuminievogo provoda [Use of roll briquetting for aluminum wire utilization]. Metallurg = Metallurgist , 2018, no. 8, pp. 5–8. (In Russian). 8. Shigehisa T., Nakagawa T., Yamamoto S. Briquetting of UBC by double roll press. Pt. 1: The application and limita- tions of the Johanson model. Powder Technology , 2014, vol. 264, pp. 608–613. DOI: 10.1016 / j.powtec.2014.04.0.098. 9. Diez M.A., Alvarez R., Cimadevilla J.L.G. Briquetting of carbon-containing wastes from steelmaking for metallur- gical coke production. Fuel , 2013, vol. 114, pp. 216–223. DOI: 10.1016/j.fuel.2012.04.018. 10. Nath S.K., Rajshekar Y., Alex T.C., Venugopalan T., Kumar S. Evaluation of the suitability of alternative binder to replace OPC for iron ore slime briquetting. Transactions of the Indian Institute of Metals , 2017, vol. 70, iss. 8, pp. 2165– 2174. DOI: 10.1007/s12666-017-1038-5. 11. Mohanty M.K., Mishra S., Mishra B., Sarkar S., Samal S.K. A novel technique for making cold briquettes for charging in blast furnace. IOP Conference Series: Materials Science and Engineering , 2016, vol. 115, iss. 1, p. 012020. DOI: 10.1088/1757-899X/115/1/012020. 12. El-Hussiny N.A., Shalabi M.E.H.Aself-reduced intermediate product from iron and steel plants waste materials us- ing a briquetting process. Powder Technology , 2011, vol. 205, iss. 1–3, pp. 217–223. DOI: 10.1016/j.powtec.2010.09.017. 13. Wan B., Chen W., Lu T. Review of solid state recycling of aluminum chips. Resources, Conservation and Recy- cling , 2017, vol. 125, pp. 37–47. DOI: 10.1016/j.resconrec.2017.06.004. 14. Shamsudin S., Lajis M., Zhong Z.W. Evolutionary in solid state recycling techniques of aluminum. Procedia CIRP , 2016, vol. 40, pp. 256–261. DOI: 10.1016/j.procir.2016.01.117. 15. Pugacheva N.B. Struktura promyshlennykh α + β -latunei [Structure of industrial α + β – brasses]. Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment , 2007, no. 2 (620), pp. 23–29. (In Russian). 16. Zhang G.-H., Chou K.-C. Deoxidation of molten steel by aluminum. Journal of Iron and Steel Research Interna- tional , 2015, vol. 22, iss. 10, pp. 905–908. DOI: 10.1016/S1006-706X(15)30088-1. 17. Pugacheva N.B., Michurov N.S., Senaeva E.I., Bykova T.M. Structure and thermophysical properties of alumi- num-matrix composites. The Physics of Metals and Metallography , 2016, vol. 117, iss. 11, pp. 1144–1151. DOI: 10.7868/ S0015323016110115. 18. Smirnov S.V., Konovalov A.V., Myasnikova M.V., Khalevitsky Yu.V., Smirnov A.S., Igumnov A.S. A computa- tional model of V95/SiC (7075/SiC) aluminum matrix composite applied to stress-strain state simulation under tensile, compressive and shear loading conditions. Diagnostics, Resource and Mechanics of materials and structures , 2017, iss. 6, pp. 16–27. DOI: 10.17804/2410-9908.2017.6.016-027. 19. Vichuzhanin D.I., Smirnov S.V., Nesterenko A.V., Igumnov A.S. Diagramma predel’noi plastichnosti metallo- matrichnogo kompozita V95 / SiC s soderzhaniem chastits SiC 10 ob. % pri okolosolidusnoi temperature [A fracture locus for a 10 volume-percent B95 / SiCmetal matrix composite at the near-solidus temperature]. Pis’ma o materialakh = Letters on Materials , 2018, vol. 8, no. 1 (29), pp. 88–93. DOI: 10.22226/2410-3535-2018-1-88-93. 20. Belov N.A. Fazovyi sostav alyuminievykh splavov [Phase composition of aluminum alloys]. Moscow, MISiS Publ., 2009. 234 p. ISBN 978-5-87623-213-7. 21. BelyaevA.I. Metallurgiya legkikh metallov [Metallurgy of light metals]. Moscow, Metallurgiya Publ., 1970. 368 p. Con fl icts of Interest The authors declare no con fl ict of interest.  2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1