Obrabotka Metallov 2020 Vol. 22 No. 4

OBRABOTKAMETALLOV Vol. 22 No. 4 2020 162 MATERIAL SCIENCE 4. Mishigdorzhiyn U., Polyansky I., Sizov I., Vetter B., Schlieter A., Heinze S., Leyens C. Thermocyclic boroaluminizing of low carbon steels in pastes. Materials Performance and Characterization , 2017, vol. 6, iss. 4, pp. 531–545. DOI: 10.1520/MPC20160082. 5. Avvakumov E.G. Mekhanicheskie metody aktivatsii khimicheskikh protsessov [Mechanical methods of activation of chemical processes]. 2nd ed. Novosibirsk, Nauka Publ., 1986. 303 p. 6. Lomovskii O.I., ed. Mekhanokompozity – prekursory dlya sozdaniya materialov s novymi svoistvami [Mecha- nocomposites – precursors for creation of materials with new properties]. Novosibirsk, SB RAS Publ., 2010. 432 p. 7. Avvakumov E.G., ed. Fundamental’nye osnovy mekhanicheskoi aktivatsii, mekhanosinteza i mekhanokhimi- cheskikh tekhnologii [Fundamental bases of mechanical activation, mechanosynthesis and mechanochemical tech- nologies]. Novosibirsk, SB RAS Publ., 2009. 342 p. 8. Polyboyarov V.A., Lapin A.E., Korotaeva Z.A., Cherepanov A.N., Solonenko O.P., Kobotaeva N.S., Sirot- kina Е . Е , Korchagin M.A. The effect of mechanical activation of metal powders on their reactivity and the properties of plasma-deposited coatings. Physical Mesomechanics , 2002, no. 5, pp. 89–94. 9. Shojaie M. Mechanically activated combustion synthesis of B 4 C-TiB 2 nanocomposite powder. Journal of Ad- vanced Materials and Processing , 2017, vol. 5, no. 1, pp. 13–21. 10. Korchagin M.A., Gavrilov A.I., Zarko V.E., Kiskin A.B., Iordan Yu.V., Trushlyakov V.I. Self-propagating high-temperature synthesis in mechanically activated mixtures of boron carbide and titanium. Combustion, Explo- sios, and Shock Waves , 2017, vol. 53, pp. 669–677. DOI: 10.1134/S0010508217060077. 11. Gaffet E., Bernard F. Mechanically activated powder metallurgy processing: a versatile way towards nanoma- terials synthesis. Annales de Chimie Science des Matériaux , 2002, vol. 27, iss. 6, pp. 47–59. DOI: 10.1016/S0151- 9107(02)90014-0. 12. Torabi O., Ebrahimi-Kahrizsangi R. Effect of the aluminum content on the mechanochemical behavior in ternary systemAl-B 2 O 3 -C. International Journal of Refractory Metals and Hard Materials , 2013, vol. 36, pp. 90–96. DOI: 10.1016/j.ijrmhm.2012.07.006. 13. Yakovenko R.V. Vliyanie mekhanoaktivatsii na strukturu i svoistva khromistoi karbidostali s dobavkami kar- bida bora [Effect of mechanical activation on the structure and properties of Cr3C2 reinforced steels with the addition of boron carbide]. Sovremennye problemy fi zicheskogo materialovedeniya [Modern problems of physical materials science] . Kiev, 2015, iss. 24, pp. 94–99. 14. Kachenyuk M.N., Smetkin A.A. Evolyutsiya struktury kompozitsionnykh chastits pri mekhanoaktivatsii po- roshkovykh smesei na osnove titana, karbida kremniya i ugleroda [Structure evolution of the composite particles at mechanical activation powder titanium, silicon carbide and carbon mixture]. Sovremennye problemy nauki i obra- zovaniya = Modern problems of science and education , 2014, no. 6. 15. Yao Q., Sun J., Fu Y., Tong W., Zhang H. An evaluation of a borided layer formed on Ti-6Al-4V alloy by means of SMAT and low-temperature boriding. Materials , 2016, vol. 9, no. 12, p. 993. DOI: 10.3390/ma9120993. 16. Canakci A., Erdemir F., Varol T., Özkaya S., Dalm ı ş R. Sytentesis of Al-B 4 C composite coating on low carbon steel by mechanical alloying method. Usak University Journal of Material Sciences , 2014, vol. 1, pp. 15–22. 17. Sarjas H., Priit K., Juhani K., Viljus M., Matikainen V., Vuoristo P. Wear resistance of HVOF sprayed coat- ings from mechanically activated thermally synthesized Cr 3 C 2 -Ni spray powder. Proceedings of the Estonian Acad- emy of Sciences , 2016, vol. 65, no. 2, pp. 101–106. DOI: 10.3176/proc.2016.2.10. 18. Tkachivskyi D., Juhani K., Surzhenkov A., Kulu P., Viljus M., Traksmaa R., Jankauskas V., Leišys R. Pro- duction of thermal spray Cr 3 C 2 -Ni powders by mechanically activated synthesis. Key Engineering Materials , 2019, vol. 799, pp. 31–36. DOI: 10.4028/www.scienti fi c.net/KEM.799.31. 19. Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang H. Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing. Lubricants , 2020, vol. 8, iss. 3. DOI: 10.3390/lubricants8030026. 20. Mishigdorzhiyn U., Sizov I. The in fl uence of boroaluminizing temperature on microstructure and wear resistance in low-carbon steels. Materials Performance and Characterization , 2018, vol. 7, no. 3, pp. 252–265. DOI: 10.1520/MPC20170074. 21. Jur č i P., Hudáková M. Diffusion boronizing of H11 hot work tool steel. Journal of Materials Engineering and Performance , 2011, vol. 20, pp. 1180–1187. DOI: 10.1007/s11665-010-9750-x. Con fl icts of Interest The authors declare no con fl ict of interest.  2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0) .

RkJQdWJsaXNoZXIy MTk0ODM1