Obrabotka Metallov 2020 Vol. 22 No. 4
OBRABOTKAMETALLOV Vol. 22 No. 4 2020 29 TECHNOLOGY 3. Zhao D.W., Du H.J., Wang G.J., Liu X.H., Wang G.D. An analytical solution for tube sinking by strain rate vector innerp-roduct integration. Journal of Materials Processing Technology , 2009, vol. 209, iss. 1, pp. 408–415. DOI: 10.1016/j.jmatprotec.2008.02.011. 4. Gulseren B., Bychkov O., Frolov I., Schaper M., Grudin O. Sinking of ultra-thick-walled double-layered aluminium tubes. Archives of Metallurgy and Materials , 2018, vol. 63, iss. 1, pp. 365–370. DOI: 10.24425/118949. 5. Myshechkin A.A., Osadchii V.Y. Drawing of thin-walled welded pipe. Steel in Translation , 2019, vol. 49, iss. 4, pp. 277–280. DOI: 10.3103/S0967091219040090. 6. Osadchii V.Ya., Vorontsov A.L., Karpov S.M. Raschet napryazhenii i usilii pri volochenii trub [Calculation of stresses and efforts when drawing pipes]. Proizvodstvo prokata = Rolling , 2001, no. 10, pp. 8–12. 7. Loginov Yu.N., Shalaeva M.S., Ovchinnikov A.S. Issledovanie sootnosheniya deformatsii pri volochenii tols- tostennykh i tonkostennykh mednykh trub [Strain relations during drawing the thin-walled and thick-walled copper tubes]. Proizvodstvo prokata = Rolling , 2011, no. 7, pp. 31–35. 8. Vydrin A.V., Yakovleva K.Yu. Matematicheskoe modelirovanie napryazhenno-deformirovannogo sostoyaniya pri volochenii trub na samoustanavlivayushcheisya opravke na osnove sovmestnogo primeneniya proektsionnogo metoda i metoda konechnykh elementov [Mathematical simulation of de fl ected mode during tube drawing on fl oat- ing plug mandrel, based on combined use of projection method and fi nite element method]. Proizvodstvo prokata = Rolling , 2016, no. 1, pp. 26–33. 9. Shimov G.V., Erpalov M.V., Pavlov D.A. Vliyanie modeli materiala na napryazhenno–deformirovannoe sos- toyanie v ochage deformatsii na primere protsessa bezopravochnogo volocheniya truby [Effect of the material model on the stress-strain state in the deformation zone during pipe drawing]. Chernye metally = Stahl und Eisen , 2018, no. 10, pp. 27–32. (In Russian). 10. Parshin S.V., Udalov A.A., Udalov A.V. Vliyanie vnekontaktnoi deformatsii na napryazheniya v protsesse plasticheskogo obzhima trub v konicheskoi matritse [In fl uence of non-contact deformation on stresses during plastic crimping of pipes in a conical matrix]. Proizvodstvo prokata = Rolling , 2017, no. 11, pp. 24–30. 11. Udalov A.A., Udalov A.V. Metod razryvnykh reshenii v issledovanii protsessa plasticheskogo obzhima trub [The method of discontinuous solutions in the study of the process of plastic crimping pipes]. Proizvodstvo prokata = Rolling , 2018, no. 2, pp. 30–36. 12. Udalov A.A., Udalov A.V., Parshin S.V. In fl uence of deformation conditions on the power regimes of the pro- cess of cold crimping of a pipe billet in a conical die. Materials Science Forum , 2019, vol. 946, iss. 10, pp. 812–817. DOI: 10.4028/www.scienti fi c.net/MSF.946.812. 13. Baranov G.L. Analiz napryazhenno-deformirovannogo sostoyaniya pri protalkivanii kruglykh trub [Analysis of the stress-strain state when pushing round pipes]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallur- giya = Izvestiya. Ferrous Metallurgy , 1984, no. 4, pp. 30–35. 14. Baranov G.L., Kuznetsov V.I. Napryazheniya na granitse ochaga plasticheskoi deformatsii pri bezopravoch- nom volochenii trub [Stresses at the boundary of the center of plastic deformation during faultless pipe drawing]. Tsvetnye metally = Non-ferrous metals , 1988, no. 11, pp. 88–90. 15. Palengat M., Chagnon G., Favier D., Louche H., Linardon C. Cold drawing of 316L stainless steel thin- walled tubes: experiments and fi nite element analysis. International Journal of Mechanical Sciences , 2013, vol. 70, pp. 69–78. DOI: 10.1016/j.ijmecsci.2013.02.003. 16. Ridzo ň M., Bu č ek P., Necpal M., Parilák Ľ . Manufacturing of precision seamless steel tubes using cold drawing technology: simulation and experiment. Applied Mechanics and Materials , 2015, vol. 808, pp. 80–85. DOI: 10.4028/www.scienti fi c.net/amm.808.80. 17. Kuroda K., Kawakami T., Okui T. In fl uential factor to dimensional precision of cold-drawn tubes. Journal of Engineering Manufacture , 2014, vol. 229, iss. 1, pp. 100–109. DOI: 10.1177/0954405414525381. 18. Zottis J., Soares Diehl C.A.T., Rocha A. da Silva . Evaluation of experimentally observed asymmetric distri- butions of hardness, strain and residual stress in cold drawn bars by FEM-simulation. Journal of Materials Research and Technology , 2018, vol. 7, iss. 4, pp. 469–478. DOI: 10.1016/j.jmrt.2018.01.004. 19. Bella P., Durcik R., Ridzon M., Parilak L. Numerical simulation of cold drawing of steel tubes with straight internal ri fl ing. Procedia Manufacturing , 2018, vol. 15, pp. 320–326. DOI: 10.1016/j.promfg.2018.07.225. 20. Kuboki T., Akiyama M., Neishi Y., Kuroda K. Effect of die geometry on residual stress level present after bar drawing. Ironmaking and Steelmaking , 2001, vol. 28, iss. 1, pp. 65–71. DOI: 10.1179/irs.2001.28.1.65. 21. Pirling N., Carradò A., Palkowski H. Residual stress distribution in seamless tubes determined experimen- tally and by FEM. Procedia Engineering , 2011, vol. 10, pp. 3080–3085. DOI: 10.1016/j.proeng.2011.04.510.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1