Obrabotka Metallov 2020 Vol. 22 No. 4

OBRABOTKAMETALLOV Vol. 22 No. 4 2020 81 EQUIPMENT. INSTRUMENTS 5. Abidin F.Z., Hung J., Zahid M.N. Portable non-contact surface roughness measuring device. IOP Conference Series: Materials Science and Engineering , 2019, vol. 469, p. 012074. DOI: 10.1088/1757-899X/469/1/012074. 6. Kiran R., Amarendra H.J., Lingappa S. Vision system in quality control automation. MATEC Web of Confer- ences , 2018, vol. 144, p. 03008. DOI: 10.1051/matecconf/201814403008. 7. Shih F.Y. Image processing and pattern recognition: fundamentals and techniques . Hoboken, NJ, Wiley, 2010. 537 p. ISBN 978-0-470-40461-4. 8. Lee B.Y., Tarng Y.S. Surface roughness inspection by computer vision in turning operations. International Journal of Machine tools and Manufacture , 2001, vol. 41, pp. 1251–1263. DOI: 10.1016/S0890-6955(01)00023-2. 9. Spagnoloa G.S., Cozzellaa L., Lecceseb F. Viability of an optoelectronic system for real time roughness. Mea- surement , 2014, vol. 58, pp. 537–543. 10. Kayahana E., Oktemb H., Hacizadeb F., Nasibovb H. Measurement of surface roughness of metal using bina- ry speckle image analysis. Tribology International , 2010, vol. 43, pp. 307–311. DOI: 10.1016/j.triboint.2009.06.010. 11. Wang T., Groche P. Sheet metal pro fi les with variable height: numerical analyses on fl exible roller beading. Journal of Manufacturing and Materials Processing , 2019, vol. 3 (1), p. 19. DOI: 10.3390/jmmp3010019. 12. Stoudt M., Hubbard J.B. Analysis of deformation-induced surface morphologies in steel sheet. Acta Materia- lia , 2005, vol. 53 (16), pp. 4293–4304. DOI: 10.1016/j.actamat.2005.05.038. 13. Vasiliev S.A., Maksimov I.I., Alekseev V.V. Metodika i ustroistvo dlya pro fi lirovaniya poverkhnosti pochvy i opredeleniya napravleniya stoka atmosfernykh osadkov v polevykh usloviyakh [Method and apparatus for pro fi l- ing the surface of the soil and determine the direction of runoff to precipitation fi eld]. Vestnik APK Stavropol’ya = Agricultural Bulletin of Stavropol Region , 2015, no 3, рр . 22–26. 14. Vasiliev S.A., Alekseev V.V., Rechnov A.V. Ekspress-metod kolichestvennoi otsenki pozhnivnykh ostatkov na poverkhnosti pochvy [Express-method of quantitative assessment of crop residues on the soil surface]. Agrarnyi nauchnyi zhurnal = Agrarian Scienti fi c Journal , 2015, no. 9, рр . 11–13. 15. Hockauf R., Grove T., Denkena B. Prediction of ground surfaces by using the actual tool topography. Journal of Manufacturing and Materials Processing , 2019, vol. 3 (2), p. 40. DOI: 10.3390/jmmp3020040. 16. Vasiliev S., Kirillov A., Afanasieva I. Method for controlling meliorative technologies on sloping cultivated lands using large scale pro fi lometer. Engineering for Rural Development. Proceedings , 2018, vol. 17, pp. 537–542. 17. Vasiliev S.A. Razrabotka metoda i pro fi lografa dlya otsenki meliorativnykh tekhnologii na sklonovykh agro- landshaftakh [Development of a method and the pro fi lometer to control reclamation technologies slope agrolandscapes]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie = Proceed- ings of Nizhnevolzskiy Agrouniversity Complex: Science and Higher Vocational Education , 2016, no. 3, pp. 220–226. 18. Vasiliev S.A. Obosnovanie konstruktivno-tekhnologicheskikh parametrov pro fi lografov dlya kontrolya me- liorativnykh tekhnologii na sklonovykh agrolandshaftakh [Justi fi cation of structural and technological parameters of pro fi lographs for reclamation technologies control on sloping cultivated lands]. Nauchnyi zhurnal Rossiiskogo NII problem melioratsii = Scienti fi c Journal of Russian Scienti fi c Research Institute of Land Improvement Problems , 2016, no. 4, pp. 40–54. 19. Ravimal D., Kim H., Koh D., Hong J.H., Lee S.K. Image-based inspection technique of a machined metal surface for an unmanned lapping process. International Journal of Precision Engineering and Manufacturing – Green Technology , 2019. DOI: 10.1007/s40684-019-00181-7. 20. Mital G., Dobránsky J., Ružbarský J., Olejárová Š. Application of laser pro fi lometry to evaluation of the surface of the workpiece machined by abrasive water jet technology. Applied Sciences , 2019, vol. 9, pp. 21–34. DOI: 10.3390/app9102134. 21. Liu C.-Y., Tzu-Ping Y. Digital multi-step phase-shifting pro fi lometry for three-dimensional ballscrew surface imaging. Optics and Laser Technology , 2015, vol. 79, pp. 115–123. DOI: 10.1016/j.optlastec.2015.12.001. 22. Bra č un D., Perdan B., Diaci J. Surface defect detection on power transmission belts using laser pro fi lometry. Journal of Mechanical Engineering , 2011, vol. 57 (3), pp. 257–266. DOI: 10.5545/sv-jme.2010.176. 23. Campana C., Moslehpour S. Non contact surface roughness measurement instrumentation. American Society for Engineering Education , 2007, AC 2007-2557, p. 12.1107. 24. Groche P., Zettler A., Berner S., Schneider G. Development and veri fi cation of a one-step-model for the design of fl exible roll formed parts. International Journal of Material Forming , 2010, vol. 4 (4). DOI: 10.1007/ s12289-010-0998-3. 25. Schilling R.J. Fundamentals of robotics, analysis and control . New Delhi, Prentice Hall, 2005. ISBN 81-203-1047-0. Con fl icts of Interest The authors declare no con fl ict of interest.  2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0) .

RkJQdWJsaXNoZXIy MTk0ODM1