Obrabotka Metallov 2020 Vol. 22 No. 4
OBRABOTKAMETALLOV Vol. 22 No. 4 2020 81 EQUIPMENT. INSTRUMENTS 5. Abidin F.Z., Hung J., Zahid M.N. Portable non-contact surface roughness measuring device. IOP Conference Series: Materials Science and Engineering , 2019, vol. 469, p. 012074. DOI: 10.1088/1757-899X/469/1/012074. 6. Kiran R., Amarendra H.J., Lingappa S. Vision system in quality control automation. MATEC Web of Confer- ences , 2018, vol. 144, p. 03008. DOI: 10.1051/matecconf/201814403008. 7. Shih F.Y. Image processing and pattern recognition: fundamentals and techniques . Hoboken, NJ, Wiley, 2010. 537 p. ISBN 978-0-470-40461-4. 8. Lee B.Y., Tarng Y.S. Surface roughness inspection by computer vision in turning operations. International Journal of Machine tools and Manufacture , 2001, vol. 41, pp. 1251–1263. DOI: 10.1016/S0890-6955(01)00023-2. 9. Spagnoloa G.S., Cozzellaa L., Lecceseb F. Viability of an optoelectronic system for real time roughness. Mea- surement , 2014, vol. 58, pp. 537–543. 10. Kayahana E., Oktemb H., Hacizadeb F., Nasibovb H. Measurement of surface roughness of metal using bina- ry speckle image analysis. Tribology International , 2010, vol. 43, pp. 307–311. DOI: 10.1016/j.triboint.2009.06.010. 11. Wang T., Groche P. Sheet metal pro fi les with variable height: numerical analyses on fl exible roller beading. Journal of Manufacturing and Materials Processing , 2019, vol. 3 (1), p. 19. DOI: 10.3390/jmmp3010019. 12. Stoudt M., Hubbard J.B. Analysis of deformation-induced surface morphologies in steel sheet. Acta Materia- lia , 2005, vol. 53 (16), pp. 4293–4304. DOI: 10.1016/j.actamat.2005.05.038. 13. Vasiliev S.A., Maksimov I.I., Alekseev V.V. Metodika i ustroistvo dlya pro fi lirovaniya poverkhnosti pochvy i opredeleniya napravleniya stoka atmosfernykh osadkov v polevykh usloviyakh [Method and apparatus for pro fi l- ing the surface of the soil and determine the direction of runoff to precipitation fi eld]. Vestnik APK Stavropol’ya = Agricultural Bulletin of Stavropol Region , 2015, no 3, рр . 22–26. 14. Vasiliev S.A., Alekseev V.V., Rechnov A.V. Ekspress-metod kolichestvennoi otsenki pozhnivnykh ostatkov na poverkhnosti pochvy [Express-method of quantitative assessment of crop residues on the soil surface]. Agrarnyi nauchnyi zhurnal = Agrarian Scienti fi c Journal , 2015, no. 9, рр . 11–13. 15. Hockauf R., Grove T., Denkena B. Prediction of ground surfaces by using the actual tool topography. Journal of Manufacturing and Materials Processing , 2019, vol. 3 (2), p. 40. DOI: 10.3390/jmmp3020040. 16. Vasiliev S., Kirillov A., Afanasieva I. Method for controlling meliorative technologies on sloping cultivated lands using large scale pro fi lometer. Engineering for Rural Development. Proceedings , 2018, vol. 17, pp. 537–542. 17. Vasiliev S.A. Razrabotka metoda i pro fi lografa dlya otsenki meliorativnykh tekhnologii na sklonovykh agro- landshaftakh [Development of a method and the pro fi lometer to control reclamation technologies slope agrolandscapes]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional’noe obrazovanie = Proceed- ings of Nizhnevolzskiy Agrouniversity Complex: Science and Higher Vocational Education , 2016, no. 3, pp. 220–226. 18. Vasiliev S.A. Obosnovanie konstruktivno-tekhnologicheskikh parametrov pro fi lografov dlya kontrolya me- liorativnykh tekhnologii na sklonovykh agrolandshaftakh [Justi fi cation of structural and technological parameters of pro fi lographs for reclamation technologies control on sloping cultivated lands]. Nauchnyi zhurnal Rossiiskogo NII problem melioratsii = Scienti fi c Journal of Russian Scienti fi c Research Institute of Land Improvement Problems , 2016, no. 4, pp. 40–54. 19. Ravimal D., Kim H., Koh D., Hong J.H., Lee S.K. Image-based inspection technique of a machined metal surface for an unmanned lapping process. International Journal of Precision Engineering and Manufacturing – Green Technology , 2019. DOI: 10.1007/s40684-019-00181-7. 20. Mital G., Dobránsky J., Ružbarský J., Olejárová Š. Application of laser pro fi lometry to evaluation of the surface of the workpiece machined by abrasive water jet technology. Applied Sciences , 2019, vol. 9, pp. 21–34. DOI: 10.3390/app9102134. 21. Liu C.-Y., Tzu-Ping Y. Digital multi-step phase-shifting pro fi lometry for three-dimensional ballscrew surface imaging. Optics and Laser Technology , 2015, vol. 79, pp. 115–123. DOI: 10.1016/j.optlastec.2015.12.001. 22. Bra č un D., Perdan B., Diaci J. Surface defect detection on power transmission belts using laser pro fi lometry. Journal of Mechanical Engineering , 2011, vol. 57 (3), pp. 257–266. DOI: 10.5545/sv-jme.2010.176. 23. Campana C., Moslehpour S. Non contact surface roughness measurement instrumentation. American Society for Engineering Education , 2007, AC 2007-2557, p. 12.1107. 24. Groche P., Zettler A., Berner S., Schneider G. Development and veri fi cation of a one-step-model for the design of fl exible roll formed parts. International Journal of Material Forming , 2010, vol. 4 (4). DOI: 10.1007/ s12289-010-0998-3. 25. Schilling R.J. Fundamentals of robotics, analysis and control . New Delhi, Prentice Hall, 2005. ISBN 81-203-1047-0. Con fl icts of Interest The authors declare no con fl ict of interest. 2020 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0) .
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1