Obrabotka Metallov 2021 Vol. 23 No. 2

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 142 MATERIAL SCIENCE 61. Zhang K.B., Fu Z.Y., Zhang J.Y., Shi J., Wang W.M., Wang H., Wang Y.C., Zhang Q.J. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. Journal of Alloys and Compounds , 2009, vol. 485, iss. 1–2, pp. L31–L34. DOI: 10.1016/j.jallcom.2009.05.144. 62. Chen W.P., Fu Z.Q., Fang S.C., Xiao H.Q., Zhu D.Z. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo 0.3 Al 0.7 high entropy alloy. Materials and Design , 2013, vol. 51, pp. 854–860. DOI: 10.1016/j. matdes.2013.04.061. 63. Ji W., Wang W., Wang H., Zhang J., Wang Y., Zhang F., Fu Z. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics , 2015, vol. 56, pp. 24–27. DOI: 10.1016/j.intermet.2014.08.008. 64. Moravcik I., Cizek J., Zapletal J., Kovasova Z., Vesely J., Minarik P., Kitzmantel M., Neubauer E., Dlouhy I. Microstructure and mechanical properties of Ni 1.5 Co 1.5 CrFeTi 0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Materials and Design , 2017, vol. 119, pp. 141–150. DOI: 10.1016/j.matdes.2017.01.036. 65. Kochetov N.A., Rogachev A.S., Shchukin A.S., Vadchenko S.G., Kovalev I.D. Mekhanicheskoe splavlenie s chastichnoi amor fi zatsiei mnogokomponentnoi poroshkovoi smesi Fe-Cr-Co-Ni-Mn i ee elektroiskrovoe plazmen- noe spekanie dlya polucheniya kompaktnogo vysokoentropiinogo materiala [Mechanical alloying with partial amor- phization of Fe-Cr-Co-Ni-Mn multicomponent powder mixture and its spark plasma sintering for compact high- entropy material production]. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya = Universities ʹ Proceedings. Powder metallurgy а nd functional coatings , 2018, no. 2, pp. 35–42. DOI: 10.17073/1997-308X-2018- 2-35-42. 66. Prusa F., Senkova A., Kusera V., Capek J., Vojtech D. Properties of high-strength ultra fi ne-grained CoCrFeN- iMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering. Materials Science and Engineering: A , 2018, vol. 734, pp. 341–352. DOI: 10.1016/j.msea.2018.08.014. 67. Alcala M.D., Real C., Fombella I., Trigo I., Cordoba J.M. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanically synthesized FeCoNiCrMn high entropy alloy. Journal of Alloys and Compounds , 2018, vol. 749, pp. 834–843. DOI: 10.1016/j.jallcom.2018.03.358. 68. Varalakshmi S., Rao G.A., Kamaraj M., Murty B.S. Hot consolidation and mechanical properties of nano- crystalline equiatimic AlFeTiCrZnCu high entropy alloy after mechanical alloying. Journal of Materials Science , 2010, vol. 45, pp. 5158–5163. DOI: 10.1007/s10853-010-4246-5. 69. Vadchenko S.G., Rogachev A.S., Kovalev D.Yu., Kovalev I.D., Mukhina N.I. TiZrNiCuAl and TiNbNiCuAl alloys by thermal explosion and high-energy ball milling. International Journal of Self-Propagating High-Tempera- ture Synthesis , 2019, vol. 28 (2), pp. 137–142. DOI: 10.3103/S1061386219020122. 70. Rogachev A.S., Mukas’yan A.S. Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku [Combustion for the synthesis of materials: Introduction to structural macrokinetics]. Moscow, Fizmatlit Publ., 2012. 398 p. ISBN 978-5-9221-1441-7. 71. Sanin V.N., Yukhvid V.I., Ikornikov D.M., Andreev D.E., Sachkova N.V., Alymov M.I. SVS-metallurgi- ya litykh vysokoentropiinykh splavov na osnove perekhodnykh metallov [SHS metallurgy of high-entropy tran- sition metal alloys]. Doklady Akademii nauk = Doklady physical chemistry , 2016, vol. 470, no. 4, pp. 421–426. DOI: 10.7868/S0869565216280124. 72. Shen W.J., Tsai M.-H., Chang Y.-S., Yeh J.-W. Effects of substrate bias on the structure and mechanical properties of (Al 1.5 CrNb 0.5 Si 0.5 Ti)N x coatings. Thin Solid Films , 2012, vol. 520, pp. 6183–6188. DOI: 10.1016/j. tsf.2012.06.002. 73. Dolique V., Thomann A.L., Brault P. High-entropy alloys deposited by magnetron sputtering. IEEE Transactions on Plasma Science , 2011, vol. 39 (11), pp. 2478–2479. DOI: 10.1109/TPS.2011.2157942. 74. Chang H.W., Huang P.K., Yeh J.W., Davison A., Tsau C.H., Yang C.C. In fl uence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi) N coatings. Surface and Coatings Technology , 2008, vol. 202, pp. 3360–3366. DOI: 10.1016/j.surfcoat.2007.12.014. 75. Cao Z.H., MaY.J., Cai Y.P., Wang G.J., Meng X.K. High strength dual-phase high entropy alloys with a tunable monolayer thickness. Scripta Materialia , 2019, vol. 173, pp. 149–153. DOI: 10.1016/j.scriptamat.2019.08.018. 76. Wei R., Tao J., Sun H., Chen C., Sun G.W., Li F.S. Soft magnetic Fe 26.7 Co 26.7 Ni 26.6 Si 9 B 11 high entropy metallic glass with good bending ductility. Materials Letters , 2017, vol. 197, pp. 87–89. DOI: 10.1016/j.matlet.2017.03.159. 77. Tong Y., Qiao J.C., Pelletier J.M., Yao Y. Strong metallic glass: TiZrHfCuNiBe high entropy alloy. Journal of Alloys and Compounds , 2020, vol. 820, art. 153119. DOI: 10.1016/j.jallcom.2019.153119. 78. Bashev V.F., Kushnerev A.I. Struktura i svoistva litykh i zhidkozakalennykh vysokoentropiinykh splavov sistemy Al-Cu-Fe-Ni-Si [Structure and properties of cast and splat-quenched high-entropy Al–Cu–Fe–Ni–Si alloys]. Fizika metallov i metallovedenie = Physics of Metals and Metallography , 2017, vol. 118, no. 1, pp. 42–50. DOI: 10.7868/S001532301610003X. (In Russian).

RkJQdWJsaXNoZXIy MTk0ODM1