Obrabotka Metallov 2021 Vol. 23 No. 2

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 39 TECHNOLOGY 4. Leonesio M., Parenti P., Cassinari A., Bianchi G. , Monn M. A time-domain surface grinding model for dy- namic simulation. Procedia CIRP , 2012, vol. 4, pp. 166–171. DOI: 10.1016/j.procir.2012.10.030. 5. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering , 2016, vol. 150, pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739. 6. Zhang N., Kirpitchenko I., Liu D.K. Dynamic model of the grinding process. Journal of Sound and Vibration , 2005, vol. 280, pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006. 7. Ahrens M., Damm J., Dagen M., Denkena B., Ortmaier T. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP , 2017, vol. 58, pp. 422–427. DOI: 10.1016/j.procir.2017.03.247. 8. Garitaonandia I., Fernandes M.H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools and Manufacture , 2008, vol. 48, pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001. 9. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high ef fi ciency deep grinding. Procedia CIRP , 2012, vol. 1, pp. 382–387. DOI: 10.1016/j.procir.2012.04.068. 10. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, non-autonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modeling Practice and Theory , 2015, vol. 57, pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005. 11. Yu H., Wang J., Lu Y. Modeling and analysis of dynamic cutting points density of the grinding wheel with an abrasive phyllotactic pattern. International Journal of Advanced Manufacturing Technology , 2016, vol. 86, pp. 1933– 1943. DOI: 10.1007/s00170-015-8262-0. 12. Guo J. Surface roughness prediction by combining static and dynamic features in cylindrical traverse grinding. International Journal of Advanced Manufacturing Technology , 2014, vol. 75, pp. 1245–1252. DOI: 10.1007/s00170- 014-6189-5. 13. Arriandiaga A., Portillo E., Sanchez J.A., Cabanes I., Pombo I. A new approach for dynamic modeling of energy consumption in the grinding process using recurrent neural networks. Neural Computing and Applications , 2016, vol. 27, pp. 1577–1592. DOI: 10.1007/s00521-015-1957-1. 14. Soler Ya.I. , Le N.V., Si M.D. In fl uence of rigidity of the hardened parts on forming the shape accuracy during fl at grinding. MATEC Web of Conferences , 2017, vol. 129, p. 01076. DOI: 10.1051/matecconf/201712901076. 15. Soler Ya.I., Khoang N.A. Vliyanie glubiny rezaniya na vysotnye sherokhovatosti instrumentov iz stali U10A pri ploskom shlifovanii krugami iz kubicheskogo nitrida bora [Effect of cutting depth on the high-altitude roughness of tools made of steel U10A with fl at grinding with cubic boron nitride]. Aviamashinostroenie i transport Sibiri [Aircraft engineering and transport of Siberia]. Irkutsk, 2017, pp. 250–254. (In Russian). 16. Novoselov Yu., Bratan S., Bogutsky V., Gutsalenko Yu. Calculation of surface roughness parameters for external cylindrical grinding. Fiabiltate si Durabilitate = Fiability and Durability , 2013, suppl. 1, pp. 5–15. 17. Novoselov Yu.K. Dinamika formoobrazovaniya poverkhnostei pri abrazivnoi obrabotke [Dynamics of surface shaping during abrasive processing]. Sevastopol, SevNTU Publ., 2012. 304 p. ISBN 978-617-612-051-3. 18. Bratan S.M., Vladetskaya E.A, Vladetskii D.O., KharchenkoA.O. Povyshenie kachestva detalei pri shlifovanii v usloviyakh plavuchikh masterskikh [Improving the quality of parts when grinding in fl oating workshops]. Moscow, Vuzovskii uchebnik Publ., Infra-M Publ., 2018. 154 p. ISBN 978-5-9558-0598-6. 19. Lobanov D.V., Yanyushkin A.S., Arkhipov P.V. Napryazhenno-deformirovannoe sostoyanie tverdosplavnykh rezhushchikh elementov pri almaznom zatachivanii [Stress-strain state of carbide cutting elements during diamond sharpening]. Vektor nauki Tol’yattinskogo gosudarstvennogo universiteta = Vector of sciences. Togliatti State University , 2015, no. 3-1 (33-1). pp. 85–91. DOI: 10.18323/2073-5073-2015-3-85-91. 20. Kassen G., Werner G. Kinematische Kenngrößen des Schleifvorganges [Kinematic parameters of the grinding process]. Industrie-Anzeiger = Industry scoreboard , 1969, no. 87, pp. 91–95. (In German). 21. Bratan S., Roshchupkin S., Kolesov A., Bogutsky B. Identi fi cation of removal parameters at combined grinding of conductive ceramic materials. MATEC Web of Conferences , 2017, vol. 129, p. 01079. DOI: 10.1051/ matecconf/201712901079. 22. Gusev V.V., Moiseev D.A. Iznos almaznogo shlifoval’nogo kruga pri obrabotke keramiki [Wear of a diamond grinding wheel when processing ceramics]. Progressivnye tekhnologii i sistemy mashinostroeniya = Progressive Technologies and Systems of Mechanical Engineering , 2019, no. 4 (67), pp. 25–29. (In Russian). 23. Novoselov Yu., Bratan S., Bogutsky B. Analysis of relation between grinding wheel wear and abrasive grains wear. Procedia Engineering , 2016, vol. 150, pp. 809–814. DOI: 10.1016/j.proeng.2016.07.116. Con fl icts of Interest The authors declare no con fl ict of interest.  2021 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ ).

RkJQdWJsaXNoZXIy MTk0ODM1