Obrabotka Metallov 2021 Vol. 23 No. 2

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 78 EQUIPMENT. INSTRUMENTS Interdisciplinary Scienti fi c Forum “New materials and advanced technologies”]. Moscow, 2018, vol. 1, pp. 106–110. (In Russian). 2. Shalunov E.P., MatrosovA.L., Lipatov Ya.M., Berent V.Ya. Dispersno-uprochnennyi kompozitsionnyi material dlya elektrokontaktnykh detalei [Dispersion-strengthened composite material for electric contact parts]. Patent RF, no. 2195511, 2002. 3. Shalunov E.P. Nanostrukturnye materialy na osnove poroshkovoi medi [Nanostructured materials based on powder copper]. Liteishchik Rossii = Foundrymen of Russia , 2016, no. 2, pp. 37–40. 4. Rechenko D.S., PopovA.Y., Belan D.Y., KuznetsovA.A. Hard-alloy metal-cutting tool for the fi nishing of hard materials. Russian Engineering Research , 2017, vol. 37, no. 2, pp. 148–149. DOI: 10.3103/S1068798X17020162. 5. Smirnov V.M., Shalunov E.P. The possibilities of creation and the prospects of application of a binder with the matrix- fi lled structure “tin bronze – the mechanically alloyed granules” for production of diamond tools. Materials Today: Proceedings , 2019, vol. 11, pt. 1, pp. 270–275. DOI: 10.1016/j.matpr.2018.12.142. 6. Salova D.P., Vinogradova T.G., Kuptsov M.V., Yurpalov D.A., Spiridonova I.S. [Research and implementation in production of developments on internal grinding of deep holes]. Vysokie tekhnologii v mashinostroenii : materialy XVI Vserossiiskoi nauchno-tekhnicheskoi konferentsii [Proceedings of the Х VI All-Russian scienti fi c and technical conference “High technologies in mechanical engineering”], Samara, 2017, pp. 33–35. (In Russian). 7. Bratan S., Vladetskaya E., KharchenkoA. Improvement of quality of details at round grinding in the conditions of a fl oating workshop. MATEC Web of Conferences , 2017, vol. 129, p. 01083. DOI: 10.1051/matecconf/201712901083. 8. Bratan S., Kolesov A., Roshchupkin S., Stadnik T. Theoretical-probabilistic model of the rotary belt grinding process. MATEC Web of Conferences , 2017, vol. 129, p. 01078. DOI: 10.1051/matecconf/201712901078. 9. Brzhozovskii B.M., Zakharov O.V. Obespechenie tekhnologicheskoi nadezhnosti pri bestsentrovoi abrazivnoi obrabotke [Provision of technological reliability with centerless abrasive processing]. Saratov, 2010. 216 p. ISBN 978-5-7433-2220-6. 10. Zhang W., Liu Ch., Yuan Y., Zhang P., Fan X., Zhu M. Probing the effect of abrasive wear on the grinding performance of rail grinding stones. Journal of Manufacturing Processes , 2021, vol. 64, pp. 493–507. DOI: 10.1016/j. jmapro.2021.02.014. 11. Nosenko V.A., Nosenko S.V. Mathematical models of operating time and cutting capacity for various stages of fl at creep feed grinding of horizontal surface by circle of direct pro fi le. Journal of Machinery Manufacture and Reliability , 2010, vol. 39, pp. 380–385. DOI: 10.3103/S1052618810040138. 12. Skeeba V.Yu., Ivancivskiy V.V., Zub N.P., Turevich S.V. Integral’naya obrabotka kak effektivnoe napravlenie resheniya zadachi perekhoda k resursosberegayushchim tekhnologiyam [Integrated processing as an effective direction of the decision problems of transition to alternative technologies]. Innovatsionnaya deyatel’nost’ = Innovative Activities , 2010, no. 10-1, pp. 66–69. 13. Li H.N., Axinte D. On the inverse design of discontinuous abrasive surface to lower friction-induced temperature in grinding: an example of engineered abrasive tools. International Journal of Machine Tools and Manufacture , 2018, vol. 132, pp. 50–63. DOI: 10.1016/j.ijmachtools.2018.04.006. 14. Zhang F.-L., Huang G.-W., Liu J.-M., Du Z.-J., Wu S.-X., Wang C.-Y. Grinding performance and wear of metal bond super-abrasive tools in grinding of Zr-based bulk metallic glass. International Journal of Refractory Metals and Hard Materials , 2021, vol. 97, p. 105501. DOI: 10.1016/j.ijrmhm.2021.105501. 15. Ivancivsky V.V., Skeeba V.Yu., Pushnin V.N. Metodika naznacheniya rezhimov obrabotki pri sovmeshchenii operatsii abrazivnogo shlifovaniya i poverkhnostnoi zakalki TVCh [Methods of appointment processing conditions when combining the operations of abrasive grinding and surface induction hardening]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2011, no. 4 (53), pp. 19–25. 16. Lyu Y., Liu Y., Li X., Di H., Wang H. A strategy on generating structured plateau surface by the sinusoidal oscillatory lapping of the grinding wheel with the phyllotactic pattern of abrasive grains. Journal of Manufacturing Processes , 2021, vol. 65, pp. 435–444. DOI: 10.1016/j.jmapro.2021.03.010. 17. Wang R.X., Zhou K., Yang J.Y., Ding H.H., Wang W.J., Guo J., Liu Q.Y. Effects of abrasive material and hardness of grinding wheel on rail grinding behaviors. Wear , 2020, vol. 454–455, p. 20332. DOI: 10.1016/j. wear.2020.203332. 18. Shekhar M., Yadav S.K.S. Diamond abrasive based cutting tool for processing of advanced engineering materials: a review. Materials Today: Proceedings , 2020, vol. 22, pt. 4, pp. 3126–3135. DOI: 10.1016/j. matpr.2020.03.449. 19. Pandiyan V., Shevchik S., Wasmer K., Castagne S., Tjahjowidodo T. Modelling and monitoring of abrasive fi nishing processes using arti fi cial intelligence techniques: a review. Journal of Manufacturing Processes , 2020, vol. 57, pp. 114–135. DOI: 10.1016/j.jmapro.2020.06.013.

RkJQdWJsaXNoZXIy MTk0ODM1