Obrabotka Metallov 2021 Vol. 23 No. 2

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 93 MATERIAL SCIENCE 12. Литовченко И . Ю ., Тюменцев А . Н ., Най - ден Е . П . Особенности мартенситных превращений и эволюция дефектной микроструктуры в процессе прокаткиметастабильной аустенитной сталипри ком - натной температуре // Физическая мезомеханика . – 2014. – Т . 17, № 1. – С . 31–42. – DOI: 10.24411/1683- 805X-2014-00045. 13. Hadji M., Badji R. Microstructure and mechani- cal properties of austenitic stainless steels after cold rolling // Journal of Materials Engineering and Perfor- mance. – 2002. – Vol. 11. – P. 145–151. – DOI: 10.1361/ 105994902770344204. 14. The in fl uence of austenite stability on the hydro- gen embrittlement and stress-corrosion cracking of stain- less steel / D. Eliezer, D.G. Chakrapani, C.J. Altstetter, E.N. Pugh // Metallurgical Transactions A. – 1979. – Vol. 10. – P. 935–941. – DOI: 10.1007/BF02658313. 15. Singh S., Altstetter C. Effects of hydrogen con- centration on slow crack growth in stainless steels // Met- allurgical Transactions A. – 1982. – Vol. 13. – P. 1799– 1808. – DOI: 10.1007/BF02647836. 16. Rozenak P., Bergman R. X-ray phase analysis of martensitic transformations in austenitic stainless steels electrochemically charged with hydrogen // Materials Science and Engineering A. – 2006. – Vol. 437. – P. 366– 378. – DOI: 10.1016/j.msea.2006.07.140. 17. Yang Q., Luo J.L. Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel // Materials Science and En- gineering: A. – 2000. – Vol. 288, iss. 1. – P. 75–83. – DOI: 10.1016/S0921-5093(00)00833-9. 18. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels / M. Hoel- zel, S.A. Danilkin, H. Ehrenberg, D.M. Toebbens, T.J. Udovic, H. Fuessa, H. Wipf // Materials Science and Engineering: A. – 2004. – Vol. 384, iss. 1–2. – P. 255– 261. – DOI: 10.1016/j.msea.2004.06.017. 19. Schramm R., Reed R. Stacking fault energies of seven commercial austenitic stainless steels // Metallur- gical Transactions A. – 1975. – Vol. 6. – P. 1345–1351. – DOI: 10.1007/bf02641927. 20. Rhodes C., Thompson A. The composition de- pendence of stacking fault energy in austenitic stainless steels // Metallurgical Transactions A. – 1977. – Vol. 8. – P. 1901–1906. – DOI: 10.1007/BF02646563. 21. Piatti G., Schiller P. Thermal and mechani- cal properties of the Cr-Mn-(Ni-free) austenitic steels for fusion reactor applications // Journal of Nuclear Materials. – 1986. – Vol. 141–143. – P. 417–426. – DOI: 10.1016/S0022-3115(86)80076-9. 22. Stacking fault energy of cryogenic austen- itic steels / D. Qi-Xun, W. Xiao-Nong, A.-D. Cheng, L. Xin-Min, L. Xin-Min // Chinese Physics. – 2002. – Vol. 11, N 6. – P. 596–600. – DOI: 10.1088/1009- 1963/11/6/315. 23. Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel / M. Koyama, E. Akiyama, T. Sawaguchi, K. Ogawa, I.V. Kireeva, Yu.I. Chumlyakov, K. Tsuzaki // Cor- rosion Science. – 2013. – Vol. 75. – P. 345–353. – DOI: 10.1016/j.corsci.2013.06.018. 24. Structure, phase composition and mechanical properties of austenitic steel Fe–18Cr–9Ni–0.5Ti–0.08C subjected to chemical deformation processing / E. Mel- nikov, G. Maier, V. Moskvina, E. Astafurova // AIP Con- ference Proceedings. – 2016. – Vol. 1783. – P. 020151-1 – 020151-4. – DOI: 10.1063/1.4966444. 25. In fl uence of hydrogenation regime on struc- ture, phase composition and mechanical properties of Fe18Cr9Ni0.5Ti0.08C steel in cold rolling / E. Mel- nikov, G. Maier, V. Moskvina, E. Astafurova // AIP Con- ference Proceedings. – 2017. – Vol. 1909. – P. 020136-1 – 020136-4. – DOI: 10.1063/1.5013817. 26. Креслин В . Ю ., Найден Е . П . Автоматизирован - ный комплекс для исследования характеристик маг - нитожестких материалов // Приборы и техника экс - перимента . – 2002. – № 1. – С . 83–86. 27. Утевский Л . М . Дифракционная электронная микроскопия в металловедении . – М .: Металлургия , 1973. – 584 с . 28. Christian J.W., Mahajan S. Deformation twin- ning // Progress in Materials Science. – 1995. – Vol. 39, N 1–2. – P. 1–157. – DOI: 10.1016/0079-6425(94)00007-7. 29. Unusual strain-induced martensite and absence of conventional grain re fi nement in twinning induced plas- ticity high-entropy alloy processed by high-pressure tor- sion / P. Sathiyamoorthi, P. Asghari-Rad, G.M. Karthik, A. Zargaran, H.S. Kim // Materials Science and Engineer- ing: A. – 2021. – Vol. 803. – P. 140570. – DOI: 10.1016/j. msea.2020.140570. 30. Microstructure and mechanical response of single-crystalline high-manganese austenitic steels un- der high-pressure torsion: the effect of stacking-fault energy / E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, H.J. Maier // Materials Science and Engineering: A. – 2014. – Vol. 604. – P. 166–175. – DOI: 10.1016/j.msea.2014.03.029. 31. Киреева И . В ., Чумляков Ю . И ., Лузгинова Н . В . Скольжение и двойникование в монокристаллах аустенитных нержавеющих сталей с азотом // Физи - ка металлов и металловедение . – 2002. – Т . 94, № 5. – С . 92–104. 32. Двойникование в монокристаллах стали Гад - фильда / Е . И . Литвинова , И . В . Киреева , Е . Г . Захаро - ва , Н . В . Лузгинова , Ю . И . Чумляков , Х . Сехитоглу ,

RkJQdWJsaXNoZXIy MTk0ODM1