Obrabotka Metallov 2021 Vol. 23 No. 2

OBRABOTKAMETALLOV Vol. 23 No. 2 2021 96 MATERIAL SCIENCE References 1. Takeichi N., Senoh H., Yokota T., Tsuruta H., Hamada K., Takeshita H.T., Tanaka H., Kiyobayashi T., Takano T., Kuriyama N. “Hybrid hydrogen storage vessel”, a novel high pressure hydrogen storage vessel combined with hydrogen storage material. International Journal of Hydrogen Energy , 2003, vol. 28, iss. 10, pp. 1121–1129. DOI: 10.1016/S0360-3199(02)00216-1. 2. Duschek D., Wellnitz J. High pressure hydrogen storage system based on new hybrid concept. Sustainable Automotive Technologies . Cham, 2013, pp. 27–33. DOI: 10.1007/978-3-319-01884-3_3. 3. MacadreA.,Artamonova M., Matsuoka S., Furtado J. Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70 MPa hydrogen fi lling station. Engineering Fracture Mechanics , 2011, vol. 78, iss. 18, pp. 3196–3211. DOI: 10.1016/j.engfracmech.2011.09.007. 4. Michler T., Marchi C.S., Naumann J., Weber S., Martin M. Hydrogen environment embrittlement of stable austenitic steels. International Journal of Hydrogen Energy , 2012, vol. 37, pp. 16231–16246. DOI: 10.1016/j. ijhydene.2012.08.071. 5. Perng T.P., Altstetter C.J. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels. Metallurgical Transactions A , 1987, vol. 18, pp. 123–134. DOI: 10.1007/BF02646229. 6. Shakhova I., Dudko V., Belyakov A., Tsuzaki K., Kaibyshev R. Effect of large strain cold rolling and subse- quent annealing on microstructure and mechanical properties of an austenitic stainless steel. Materials Science and Engineering: A , 2012, vol. 545, pp. 176–186. DOI: 10.1016/j.msea.2012.02.101. 7. Wasnik D.N., Gopalakrishnan I.K., Yakhmi J.V., Kain V., Samajdar I. Cold rolled texture and microstructure in types 304 and 316L austenitic stainless steels. ISIJ International , 2003, vol. 43, no. 10, pp. 1581–1589. DOI: 10.2355/ isijinternational.43.1581. 8. Padilha A.F., Plaut R.L., Rios P.R. Annealing of cold-worked austenitic stainless steels. ISIJ International , 2003, vol. 43, no. 2, pp. 135–143. DOI: 10.2355/isijinternational.43.135. 9. Ghosh S.K., Mallick P., Chattopadhyay P.P. Effect of cold deformation on phase evolution and mechanical properties in an austenitic stainless steel for structural and safety applications. Journal of Iron and Steel Research International , 2012, vol. 19, no. 4, pp. 63–68. DOI: 10.1016/s1006–706x(12)60089-2. 10. Ren-bo S., Jian-ying X., Dong-po H. Characteristics of mechanical properties and microstructure for 316l austenitic stainless steel. Journal of Iron and Steel Research International , 2011, vol. 18, no. 11, pp. 53–59. DOI: 10.1016/S1006-706X(11)60117-9. 11. Litovchenko I.Yu., Shevchenko N.V., TyumentsevA.N., Naiden E.P. Fazovyi sostav i defektnaya substruktura austenitnoi stali 02X17T14M2posledeformatsii prokatkoi pri komnatnoi temperature [Phasecompositionanddefective substructure of austenitic steel 02Cr17Ni14Mo2 after room temperature rolling]. Fizicheskaya mezomekhanika = Physical mesomechanics , 2006, vol. 9, spec. iss. 1, pp. 137–140. DOI: 10.24411/1683-805X-2006-00050. 12. Litovchenko I.Yu., Tyumentsev A.N., Naiden E.P. Osobennosti martensitnykh prevrashchenii i evolyutsiya defektnoi mikrostruktury v protsesse prokatki metastabil’noi austenitnoi stali pri komnatnoi temperature [Peculiarities of martensite transformations and evolution of defect microstructure in metastable austenitic steel rolled at room temperature]. Fizicheskaya mezomekhanika = Physical mesomechanics , 2014, vol. 17, no. 1, pp. 31– 42. DOI: 10.24411/1683-805X-2014-00045. 13. Hadji M., Badji R. Microstructure and mechanical properties of austenitic stainless steels after cold rolling. Journal of Materials Engineering and Performance , 2002, vol. 11, pp. 145–151. DOI: 10.1361/105994902770344204. 14. Eliezer D., Chakrapani D.G., Altstetter C.J., Pugh E.N. The in fl uence of austenite stability on the hydrogen embrittlement and stress-corrosion cracking of stainless steel. Metallurgical Transactions A , 1979, vol. 10, pp. 935– 941. DOI: 10.1007/BF02658313. 15. Singh S.,Altstetter C. Effects of hydrogen concentration on slow crack growth in stainless steels. Metallurgical Transactions A , 1982, vol. 13, pp. 1799–1808. DOI: 10.1007/BF02647836. 16. Rozenak P., Bergman R. X-ray phase analysis of martensitic transformations in austenitic stainless steels electrochemically charged with hydrogen. Materials Science and Engineering A , 2006, vol. 437, pp. 366–378. DOI: 10.1016/j.msea.2006.07.140. 17. Yang Q., Luo J.L. Martensite transformation and surface cracking of hydrogen charged and outgassed type 304 stainless steel. Materials Science and Engineering: A , 2000, vol. 288, iss. 1, pp. 75–83. DOI: 10.1016/S0921- 5093(00)00833-9. 18. Hoelzel M., Danilkin S.A., Ehrenberg H., Toebbens D.M., Udovic T.J., Fuessa H., Wipf H. Effects of high- pressure hydrogen charging on the structure of austenitic stainless steels. Materials Science and Engineering: A , 2004, vol. 384, iss. 1–2, pp. 255–261. DOI: 10.1016/j.msea.2004.06.017.

RkJQdWJsaXNoZXIy MTk0ODM1