Obrabotka Metallov 2021 Vol. 23 No. 3
OBRABOTKAMETALLOV Vol. 23 No. 3 2021 110 MATERIAL SCIENCE References 1. Wade N., Adachi Y., Hosoi Z. A role of hydrogen in shape memory effect of Ti-Ni alloys. Scripta Metallurgica et Materialia , 1990, vol. 24 (6), pp. 1051–1055. DOI: 10.1016/0956-716x(90)90298-u. 2. Yokoyama K., Kaneko K., Ogawa T., Moriyama K., Asaoka K., Sakai J. Hydrogen embrittlement of work-hardened Ni-Ti alloy in fl uoride solutions. Biomaterials , 2005, vol. 26, pp. 101–108. DOI: 10.1016/j. biomaterials.2004.02.009. 3. Astafurova E.G., Melnikov E.V., Astafurov S.V., Ratochka I.V., Mishin I.P., Maier G.G., Moskvina V.A., Zakharov G.N., Smirnov A.I., Bataev V.A. Hydrogen embrittlement of austentic stainless steels with ultra fi ne- grained structures of different morphhologies. Physical Mesomechanics , 2019, vol. 22, no. 4, pp. 113–126. DOI: 10.1134/S1029959919040076. Translated from Fizicheskaya mezomekhanika , 2018, vol. 21, no. 2, pp. 103– 117. DOI: 10.24411/1683-805X-2018-12011. 4. Kolachev B.A. Vodorodnaya khrupkost’ metallov [Hydrogen embrittlement of metals]. Moscow, Metallurgiya Publ., 1985. 216 p. 5. Gadel’shin M.Sh., Anisimova L.I., Boitsova E.S. Vodorodnoe plasti fi tsirovanie titanovykh splavov [Hydrogen plasticisation of titanium alloys]. Mezhdunarodnyi nauchnyi zhurnal al’ternativnaya energetika i ekologiya = International Scienti fi c Journal Alternative Energy and Ecology , 2004, vol. 17, no. 9, pp. 26–29. 6. Khadzhieva O.G., Illarionov A.G., Popov A.A., Grib S.V. Effect of hydrogen on the structure of quenched orthorhombic titanium aluminide-based alloy and phase transformations during subsequent heating. The Physics of Metals and Metallography , 2013, vol. 114, no. 6, pp. 577–582. DOI: 10.1134/S0031918X13060070. Translated from Fizika metallov i metallovedenie , 2013, vol. 114, no. 6, pp. 577–582. DOI: 10.7868/S0015323013060077. 7. Panin V.E., Egorushkin V.E., Moiseenko D.D., Maksimov P.V., Kulkov S.N., Panin S.V. Functional role of polycrystal grain boundaries and interfaces in micromechanics of metal ceramic composites under loading. Computational Materials Science , 2016, vol. 116, pp. 74–81. DOI: 10.1016/j.commatsci.2015.10. 8. Otsuka K., Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Progress in Materials Science , 2005, vol. 50 (5), pp. 511–678. DOI: 10.1016/j.pmatsci.2004.10.001. 9. El-Eskandarany M.S. Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. Journal of Alloys and Compounds , 2000, vol. 305, pp. 225–238. DOI: 10.1016/ s0925-8388(00)00692-7. 10. Nobuki T., Crivello J-C., Cuevas F. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. International Journal of Hydrogen Energy , 2019, vol. 44, pp. 10770–10776. DOI: 10.1016/j. ijhydene.2019.02.203. 11. Kumar A., Shashikala K., Banerjee S., Nuwad J., Das P., Pillai C.G.S. Effect of cycling on hydrogen storage properties of Ti 2 CrV alloy. International Journal of Hydrogen Energy , 2012, vol. 37, pp. 3677–3682. DOI: 10.1016/j. ijhydene.2011.04.135. 12. Bratanich T.I., Get’man O.I., Permyakova T.V., Skorokhod V.V. Destructive hydrogenation as method for improvement of TiNi exploitation properties. International Journal of Hydrogen Energy , 2007, vol. 32, pp. 3941– 3946. DOI: 10.1016/j.ijhydene.2007.04.033. 13. Balcerzak M., Jakubowicz J., Kachlicki T., Jurczyk M. Hydrogenation properties of nanostructured Ti 2 Ni- based alloys and nanocomposites. Journal of Power Sources , 2015, vol. 280, pp. 435–445. DOI: 10.1016/j. jpowsour.2015.01.135. 14. Ivasishin O.M., Eylon D., Bondarchuk V.I., Savvakin D.G. Diffusion during powder metallurgy synthesis of titanium alloys. Defect Diffusion Forum , 2008, vol. 277, pp. 177–185. DOI: 10.4028/www.scienti fi c.net/ddf.277.177. 15. Ivasishin O.M., Savvakin D.G., Gumenyak M.M., Bondarchuk O.B. Role of surface contamination in titanium PM. Key Engineering Materials , 2012, vol. 520, pp. 121–132. DOI: 10.4028/www.scienti fi c.net/kem.520.121. 16. Ivasishin O.M., Moxson V.S. Low-cost titanium hydride powder metallurgy. Titanium Powder Metallurgy . Amsterdam, Boston, Elsevier, 2015, pp. 117–148. DOI: 10.1016/b978-0-12-800054-0.00008-3. 17. Sun P., Fang Z.Z., Koopman M. A comparison of hydrogen sintering and phase transformation (HSPT) processing with vacuum sintering of CP-Ti. Advanced Engineering Materials , 2013, vol. 15, pp. 1007–1013. DOI: 10.1002/adem.201300017. 18. Paramore J.D., Fang Z.Z., Sun P. Hydrogen sintering of titanium and its alloys. Titanium Powder Metallurgy . Amsterdam, Boston, Elsevier, 2015, pp. 163–182. DOI: 10.1016/b978-0-12-800054-0.00010-1. 19. Baimakov Yu.V., Zhurin A.I. Elektroliz v gidrometallurgii [Electrolysis in hydrometallurgy]. Moscow, Metallurgizdat Publ., 1962. 617 p.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1