Obrabotka Metallov 2021 Vol. 23 No. 3
OBRABOTKAMETALLOV Vol. 23 No. 3 2021 153 MATERIAL SCIENCE 5. Kachanov L.M. Vremya razrusheniya v usloviyakh polzuchesti [Time of destruction under creep conditions]. Problemy mekhaniki sploshnoi sredy [Problems of Continuum Mechanics]. Moscow, 1961, pp. 186–201. 6. Rabotnov Yu.N. O mekhanizme dlitel’nogo razrusheniya [On the mechanism of long-term destruction]. Voprosy prochnosti materialov i konstruktsii [Questions of strength of materials and structures]. Moscow, AN SSSR Publ., 1959, pp. 5–7. 7. Kowalewski Z.L., Hayhurst D.R., Dyson B.F. Mechanisms-based creep constitutive equations for an aluminium alloy. Journal of Strain Analysis for Engineering Design , 1994, vol. 29, no. 4, pp. 309–316. DOI: 10.1243/03093247V294309. 8. Othman A.M., Hayhurst D.R., Dyson B.F. Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations. Proceedings of the Royal Society of London. Series A , Mathematical and Physical Sciences , 1993, vol. 441, no. 1912, pp. 343–358. Available at: https:// www.jstor.org/stable/52272 (accessed 15.08.2021). 9. Naumenko K, Kostenko Y. Structural analysis of a power plant component using a stress-range-depen- dent creep-damage constitutive model. Materials Science and Engineering: A . 2009, vol. 510–511, pp. 169–174. DOI: 10.1016/j.msea.2008.04.096. 10. Stewart C.M., Gordon A.P., Ma Y.W., Neu R.W. An anisotropic tertiary creep damage constitutive mod- el for anisotropic materials. International Journal of Pressure Vessels and Piping , 2011, vol. 88, pp. 356–364. DOI: 10.1016/j.ijpvp.2011.06.010. 11. Rabotnov Yu.N. Polzuchest’ elementov konstruktsii [Creep problems in structure members]. Moscow, Nauka Publ., 1966. 752 p.). 12. Sosnin O.V., Gorev B.V., Nikitenko A.F. Energeticheskii variant teorii polzuchesti [Energy version of creep theory]. Novosibirsk, Lavrentyev Institute of Hydrodynamics, 1986. 96 p. 13. Gorev B.V., Klopotov I.D. Description of the creep process and long strength by equations with one sca- lar damage parameter. Journal of Applied Mechanics and Technical Physics , 1994, vol. 35, iss. 5, pp. 726–734. DOI: 10.1007/BF02369552. Translated from Prikladnaya mekhanika i tekhnicheskaya fi zika , 1994, vol. 35, iss. 5. pp. 92–102. 14. Bormotin K.S., Oleinikov A.I. Variational principles and optimal solutions of the inverse problems of creep bending of plates. Journal of Applied Mechanics and Technical Physics , 2012, vol. 53, iss. 5, pp. 751–760. DOI: 10.1134/S0021894412050148. Translated from Prikladnaya mekhanika i tekhnicheskaya fi zika , 2012, vol. 53, iss. 5, pp. 136–146. 15. Bormotin K.S., VinA. Metod dinamicheskogo programmirovaniya v zadachakh optimal’nogo deformirovani- ya paneli v rezhime polzuchesti [Amethod of dynamic programming in the problems of optimal panel deformation in the creep mode]. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming , 2018, vol. 19, iss. 4, pp. 470–478. DOI: 10.26089/NumMet.v19r442. 16. Tsvelodub I.Yu. Postulat ustoichivosti i ego prilozheniya v teorii polzuchesti metallicheskikh materialov [The stability postulate and its applications in creep theory of metallic materials]. Novosibirsk, Lavrentyev Institute of Hydrodynamics, 1991. 202 p. 17. Banshchikova I.A. On the choice of forming modes and estimation of residual service life using kinetic equations with a scalar damage parameter. Journal of Applied Mechanics and Technical Physics , 2019, vol. 60, iss. 6, pp. 1096–1103. DOI: 10.1134/S0021894419060154. Translated from Prikladnaya mekhanika i tekhnicheskaya fi zika , 2019, vol. 60, no. 6, pp. 139–148. 18. Gorev B.V., Lyubashevskaya I.V., Panamarev V.A., Iyavoyenen S.V. Description of creep and fracture process of modern construction materials using kinetic equations in energy form. Journal of Applied Mechanics and Techni- cal Physics , 2014, vol. 55, iss. 6, pp. 1020–1030. DOI: 10.1134/S0021894414060145. Translated from Prikladnaya mekhanika i tekhnicheskaya fi zika , 2014, vol. 55, no. 6, pp. 132–144. 19. Lokoshchenko A.M. Long-term strength of metals in complex stress state (a survey). Mechanics of Solids , 2012, no. 47, pp. 357–372. DOI: 10.3103/S0025654412030090. Translated from Izvestiya Akademii nauk. Mekhan- ika tverdogo tela , 2012, no. 3, pp. 116–136. 20. Kobayashi H., Ohki R., Itoh T., Sakane M. Multiaxial creep damage and lifetime evaluation under biax- ial and triaxial stresses for type 304 stainless steel. Engineering Fracture Mechanics , 2017, vol. 174, pp. 30–43. DOI: 10.1016/j.engfracmech.2017.01.001 21. Goyal S., Laha K. Creep life prediction of 9Cr–1Mo steel under multiaxial state of stress. Materials Science and Engineering: A . 2014, vol. 615, pp. 348–360. DOI: 10.1016/j.msea.2014.07.096. 22. Gorev B.V., Klopotov I.D., Zakharova T.E. K opisaniyu protsessa polzuchesti i razrusheniya materialov s nemonotonnym izmeneniem deformatsionno-prochnostnykh svoistv [On description of creep and fracture of the
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1