OBRABOTKAMETALLOV Vol. 23 No. 4 2021 123 MATERIAL SCIENCE References 1. Murr L.E.Metallurgyof additivemanufacturing: examples fromelectronbeammelting. AdditiveManufacturing , 2015, vol. 5, pp. 40–53. DOI: 10.1016/j.addma.2014.12.002. 2. Milevski J.O. Additive manufacturing of metals: from fundamental technology to rocket. nozzles, medical implants and custom jewelry . Cham, Springer, 2017. 351 p. ISBN 978-3-319-58205-4. 3. Zhang Y., Wu L., Guo X., Kane S., Deng Y., Jung Y.-G., Lee J.-H., Zhang J. Additive manufacturing of metallic materials: a review. Journal of Materials Engineering and Performance , 2018, vol. 27, iss. 1, pp. 1–13. DOI: 10.1007/ s11665-017-2747-y. 4. DebRoy T., Mukherjee T., Wei H.L., Elmer J.W., Milewski J.O. Metallurgy, mechanistic models and machine learning in metal printing. Nature Reviews Materials , 2020, vol. 6, pp. 48–68. DOI: 10.1038/s41578-020-00236-1. 5. Edwards P., O’Conner A., Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. Journal of Manufacturing Science and Engineering , 2013, vol. 135, iss. 6, p. 061016. DOI: 10.1115/1.4025773. 6. Tavlovich B., Shirizly A., Katz R. EBW and LBW of additive manufactured Ti6Al4V products. Welding Journal , 2018, vol. 97, iss. 6, pp. 179–190. DOI: 10.29391/2018.97.016. 7. Peleshenko S., Korzhyk V., Voitenko O., Khaskin V., Tkachuk V.Analisis of the current state of additive welding technologies for manufacturing volume metallic products. Eastern-European Journal of Enterprise Technologies , 2017, vol. 3/1, iss. 87, pp. 42–52. DOI: 10.15587/1729-4061.2017.99666. 8. Wang J., Pan Z., Wei L., He S., Cuiuri D., Li H. Introduction of ternary alloying element in wire arc additive manufacturing of titanium aluminide intermetallic. Additive Manufacturing , 2019, vol. 27, pp. 236–245. DOI: 10.1016/j.addma.2019.03.014. 9. Chekir N., Sixsmith J.J., Tollett R., Brochu M. Laser wire deposition of a large Ti-6Al-4V space component. Welding Journal , 2019, vol. 28, iss. 6, pp. 172–180. 10. Taminger K.M., Hafley R.A. Electron beam freeform Fabrication for cost effective near-net shape manufacturing. NATO/RTO AVT-139 Specialists’ Meeting on Cost Effective Manufacture via Net Shape Processing , Amsterdam, 2006, p. 16. 11. Savchenko N.L., Vorontsov A.V., Utyaganova V.R., Eliseev A.A., Rubtsov V.E., Kolubaev E.A. Osobennosti strukturno-fazovogo sostoyaniya splava Ti-6Al-4V pri formirovanii izdelii s ispol’zovaniem elektronno-luchevoi provolochnoi additivnoi tekhnologii [Features of the structural-phase state of the alloy Ti-6Al-4V in the formation of products using wire-feed electron beam additive manufacturing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science , 2018, vol. 20, no. 4, pp. 60–71. DOI: 10.17212/1994-63092018-20.4-60-71. 12. Fedorov V.V., Klimenov V.A., Batranin A.V., Ranga P. Development of electron-beam equipment and technology for additive layer-wise wire cladding. AIP Conference Proceedings , 2019, vol. 2167, p. 020097. DOI: 10.1063/1.5131964. 13. Klimenov V.A., Fedorov V.V., Slobodyan M.S., Pushilina N.S., Strelkova I.L., Klopotov A.A., Batranin A.V. Microstructure and compressive behavior of Ti-6Al-4V alloy built by electron beam free-form fabrication. Journal of Materials Engineering and Performance , 2020, vol. 29, iss. 11, pp. 7710–7721. DOI: 10.1007/s11665-020-05223-9. 14. Simar A., Godet S., Watkins T.R. Highlights of the special issue on metal additive manufacturing. Materials Characterization , 2018, vol. 143, pp. 1–4. DOI: 10.1016/j.matchar.2018.06.013. 15. Tarasov S.Yu., Filippov A.V., Savchenko N.L., Fortuna S.V., Rubtsov V.E., Kolubaev E.A., Psakhie S.G. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel. The International Journal of Advanced Manufacturing Technology , 2018, vol. 99, pp. 2353–2363. DOI: 10.1007/s00170-018-2643-0. 16. Tarasov S.Yu., Filippov A.V., Shamarin N.N., Shamarin N., Fortuna .S.V., Maier G.G., E.A. Kolubaev. Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. Journal of Alloys and Compounds , 2019, vol. 803, pp. 364–370. DOI: 10.1016/j.jallcom.2019.06.246. 17. Xu X., Ganguly S., Ding J., Guo S., Williams S., Martina F. Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process. Materials Characterization , 2018, vol. 143, pp. 152–162. DOI: 10.1016/j.matchar.2017.12.002. 18. Kostina M.V., Krivorotov V.I., Kostina V.S., Kudrashov A.E., Muradyan S.O. Osobennosti khimicheskogo sostava i strukturno-fazovogo sostoyaniya, obuslovivshie snizhenie korrozionnoi stoikosti detalei iz stali 18Cr-10Ni [Features of chemical composition and structural-phase state decreasing corrosion resistance of parts from 18Cr-
RkJQdWJsaXNoZXIy MTk0ODM1