OBRABOTKAMETALLOV Vol. 23 No. 4 2021 91 EQUIPMENT. INSTRUMENTS 4. Dong Z., Zhang X.-M., Xu W.-J., Ding H. Stress field analysis in orthogonal cutting process using digital image correlation technique. Journal of Manufacturing Science and Engineering , 2017, vol. 139, p. 031001. DOI: 10.1115/1.4033928. 5. Ramesh K., Sasikumar S. Digital photoelasticity: recent developments and diverse applications. Optics and Lasers in Engineering , 2020, vol. 135. DOI: 10.1016/j.optlaseng.2020.106186. 6. Isogimi K., Kitagawa T., Kurita H. Fundamental research of stress analysis in cutting tool by means of caustics method. Journal of the Japan Society for Precision Engineering , 1988, vol. 54, iss. 2, pp. 390 ‒ 395. DOI: 10.2493/jjspe.54.390. 7. Flores-Moreno J.M., Torre-Ibarra M.D.L., Hernandez-Montes M.D.S., Santoyo F.M. DHI contemporary methodologies: a review and frontiers. Optics and Lasers in Engineering , 2020, vol. 135, p. 106184. DOI: 10.1016/j. optlaseng.2020.106184. 8. Torre I.M. De la, Hernandez-Montes M.D.S., Flores-Moreno J.M., Santoyo F.M. Laser speckle based digital optical methods in structural mechanics: a review. Optics and Lasers in Engineering , 2016, vol. 87, pp. 32 ‒ 58. DOI: 10.1016/j.optlaseng.2016.02.008. 9. Razumovsky I.A. Interferentsionno-opticheskie metody mekhaniki deformiruemogo tverdogo tela [Interference-optical methods of solid mechanics]. Moscow, Bauman MSTU Publ., 2007. 240 p. ISBN 5-70382731-4. 10. Longbottom J.M., Lanham J.D. Cutting temperature measurement while machining – a review. Aircraft Engineering and Aerospace Technology , 2005, vol. 77, iss. 2, pp. 122 ‒ 130. DOI: 10.1108/00022660510585956. 11. Komanduri R.A., Hou Z.B. Review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribology International , 2001, vol. 34, pp. 653 ‒ 682. DOI: 10.1016/S0301-679X(01)00068-8. 12. Yoshioka H., Hashizume H., Shinno H. In-process microsensor for ultraprecision machining. IEE Proceedings – Science Measurement and Technology , 2004, vol. 151, no. 2. DOI: 10.1049/ip-smt:20040375. 13. Davies M.A., Ueda T., M’Saoubi R., Mullany B., Cooke A.L. On the measurement of temperature in material removal processes. CIRP Annals , 2007, vol. 56, iss. 2, pp. 581 ‒ 604. DOI: 10.1016/j.cirp.2007.10.009. 14. Pujana J., Campo L. del, Pérez-Sáez R.B., Tello M.J., Gallego I., Arrazola P.J. Radiation thermometry applied to temperature measurement in the cutting process. Measurement Science and Technology , 2007, vol. 18, no. 11, pp. 3409 ‒ 3416. DOI: 10.1088/0957-0233/18/11/022. 15. Hijazi A., Sachidanandan S., Singh R., Madhavan V. A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements. Measurement Science and Technology , 2011, vol. 22, no. 2, pp. 1 ‒ 13. DOI: 10.1088/0957-0233/22/2/025106. 16. Magunov A.N. Laser thermometry of solids . Cambridge, Cambridge International Science Publishing, 2006. 240 p. ISBN 978-1-904602-12-5. 17. James J.D., Spittle J.A., Brown S.G.R., Evans R.W. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Measurement Science and Technology , 2001, vol. 12, pp. R1–R15. DOI: 10.1088/0957-0233/12/3/201. 18. Goryainov V.V., Popov M.I., Chernyshov A.D. Solving the stress problem in a sharp wedge-whaped cutting tool using the quick decomposition method and the problem of matching boundary conditions. Mechanics of Solids , 2019, vol. 54, no. 7, pp. 1083–1097. DOI: 10.3103/S0025654419070094. 19. Klocke F., Brockmann M., Gierlings S., Veselovac D. Analytical model of temperature distribution in metal cutting based on potential theory. Mechanical Sciences , 2015, vol. 6, pp. 89 ‒ 94. DOI: 10.5194/ms-6-89-2015. 20. Arrazola P.J., Özel T., Umbrello D., Davies M., Jawahir I.S. Recent advances in modelling of metal machining processes. CIRP Annals , 2013, vol. 62, iss. 2, pp. 695 ‒ 718. DOI: 10.1016/j.cirp.2013.05.006. 21. Bezyazychnyi V.F., Szcerek M. Thermal processes research development in machine-building technology. Journal of Mining Institute , 2018, vol. 232, pp. 395–400. DOI:10.31897/pmi.2018.4.395. 22. Olt J.J., Liyvapuu A.A., Liivapuu O.O., Maksarov V.V., Tärgla T.T. Mathematical modelling of cutting process system. Engineering Mathematics I. Cham, Springer, 2016, pp. 173 ‒ 186. DOI: 10.1007/978-3-31942082-0_11.
RkJQdWJsaXNoZXIy MTk0ODM1