OBRABOTKAMETALLOV Vol. 24 No. 1 2022 32 TECHNOLOGY 4. Petrů J., Zlámal T., Čep R., Sadílek M., Stančeková D. The effect of feed rate on durability and wear of exchangeable cutting inserts during cutting Ni-625. Tehnicki Vjesnik = Technical Gazette, 2017, vol. 24, suppl. 1, pp. 1–6. DOI: 10.17559/TV-20131221170237. 5. Makarov A.D. Optimizatsiya protsessov rezaniya [Cutting process optimization]. Moscow, Mashinostroenie Publ., 1976. 278 p. 6. Baralić J.C., Dučić N.G., Mitrović A.M., Kovač P.P., Lučić M.V. Modeling and optimization of temperature in end milling operations. Thermal Science, 2019, vol. 23, iss. 6A, pp. 3651–3660. DOI: 10.2298/TSCI190328244B. 7. Liao Y.S., Lin H.M., Wang J.H. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. Journal of Materials Processing Technology, 2008, vol. 201, iss. 1–3, pp. 460–465. DOI: 10.1016/j. jmatprotec.2007.11.176. 8. Fedorov S.V., Min Kh.S. Vliyanie kompleksnoi poverkhnostnoi obrabotki na iznashivanie frezernykh tverdosplavnykh plastin pri rezanii nikelevogo splava [The infl uence of complex surface treatment on wear of milling carbide inserts when machining of nickel alloy]. Izvestiya vysshikh uchebnykh zavedenii. Fizika = Russian Physics Journal, 2018, vol. 61, no. 8-2, pp. 93–97. (In Russian). 9. Tanaka H., Sugihara T., Enomoto T. High speed machining of Inconel 718 focusing on wear behaviors of PCBN cutting tool. Procedia CIRP, 2016, vol. 46, pp. 545–548. DOI: 10.1016/j.procir.2016.03.120. 10. Czan A., Sajgalik M., Holubjak J., Zauskova L., Czanova T., Martikan P. Identifi cation of temperatures in cutting zone when dry machining of nickel alloy Inconel 718. Procedia Manufacturing, 2017, vol. 14, pp. 66–75. DOI: 10.1016/j.promfg.2017.11.008. 11. Czan A., Danis I., Holubjak J., Zauskova L., Czánová T., Mikloš M., Martikáň P. Cutting zone temperature identifi cation during machining of nickel alloy Inconel 718. Technological Engineering, 2017, vol. 14, pp. 24–29. DOI: 10.1515/teen-2017-0017. 12. Coz G.L., Dudzinski D. Temperature variation in the work piece and in the cutting tool when dry milling Inconel 718. International Journal of Advanced Manufacturing Technology, 2014, vol. 74, iss. 5–8, pp. 1133–1139. DOI: 10.1007/s00170-014-6006-1. 13. Sato M., Tamura N., Tanaka H. Temperature variation in the cutting tool in end milling. Journal of Manufacturing Science and Engineering, 2011, vol. 133, iss. 2, p. 021005. DOI: 10.1115/1.4003615. 14. Ozela T., Altan T. Process simulation using fi nite element method – prediction of cutting forces, tool stresses and temperatures in high-speed fl at end milling. International Journal of Machine Tools and Manufacture, 2000, vol. 40, iss. 5, pp. 713–738. DOI: 10.1016/S0890-6955(99)00080-2. 15. Heisel U., Kushner V., Storchak M. Effect of machining conditions on specifi c tangential forces. Production Engineering, 2012, vol. 6, iss. 6, pp. 621–629. DOI: 10.1007/s11740-012-0417-3. 16. Kushner V.S., Storchak M.G., Burgonova O.Yu., Gubin D.S. Razrabotka matematicheskoi modeli krivoi techeniya splavov pri adiabaticheskikh usloviyakh deformirovaniya [Mathematical modeling of the alloy fl ow curve in adiabatic conditions of deformation]. Zavodskaya laboratoriya. Diagnostika materialov = Industrial laboratory. Diagnostics of materials, 2017, vol. 83, no. 5, pp. 45–49. Available at: https://www.zldm.ru/jour/article/view/477/478 (accessed 27.01.2022). 17. Soo S.L., Khan S.A., Aspinwall D.K., Harden P., Mantle A.L., Kappmeyer G., Pearson D., M’Saoubi R. High speed turning of Inconel 718 using PVD-coated PCBN tools. CIRP Annals – Manufacturing Technology, 2016, vol. 65, iss. 1, pp. 89–92. DOI: 10.1016/j.cirp.2016.04.044. 18. Klocke F., Brockmann M., Gierlings S., Veselovac D., Kever D., Roidl B., Schmidt G., Semmler U. Analytical modelling methods for temperature fi elds in metal cutting based on panel method of fl uid mechanics. Procedia CIRP, 2015, vol. 31, pp. 352–356. DOI: 10.1016/j.procir.2015.03.067. 19. Heisel U., Storchak M., Eberhard P., Gaugele T. Experimental studies for verifi cation of thermal effects in cutting. Production Engineering, 2011, vol. 5, pp. 507–515. DOI: 10.1007/s11740-011-0312-3. 20. Shrot A., Baker M. Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science, 2012, vol. 52, iss. 1, pp. 298–304. DOI: 10.1016/j.commatsci.2011.07.035. Confl icts of Interest The authors declare no confl ict of interest. 2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1