Actual Problems in Machine Building. Vol. 9. N 1-2. 2022 Innovative Technologies in Mechanical Engineering ____________________________________________________________________ 14 материалы V международной научно-практической конференции молодых ученых, аспирантов и студентов, Пермь, 15–16 дек. 2021 г. – Пермь: ПНИПУ, 2022. – С. 215–218. 15. Солем Я.Э. Программирование компьютерного зрения на языке Python. – М.: ДМК Пресс, 2016. – 312 с.: ил. – ISBN 978-5-97060-200-3. 16. Михалев О.Н., Янюшкин А.С. Применение нейронной сети для автоматизации проектирования // Высокие технологии в машиностроении: материалы XVIII Всероссийской научно-технической конференции. – Самара: Изд-во СамГТУ, 2021. – С. 93–96. Шакирьянов Э.Д. Компьютерное зрение на Python. Первые шаги. – М.: Лаборатория знаний, 2021. – 160 с.: ил. – ISBN 978-5-00101-318-1. IMPROVING THE PRODUCTIVITY OF TECHNOLOGICAL PROCESS DEVELOPMENT WITH THE HELP OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES Mikhalev O.N., Ph.D. (Engineering), e-mail: mih_tm@mail.ru Yanyushkin A.S., D.Sc. (Engineering), Professor, e-mail: yanyushkinas@mail.ru I.N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation Abstract Labor productivity in developed countries is increasing exponentially; enterprises that are not involved in this process cannot compete in the market and are lagging behind. Therefore, automation of enterprises today is a vital and paramount task. The design of technological processes is a creative activity, and therefore the most time-consuming stage of any production. To automate it, it is necessary to use artificial intelligence technologies, but it is required to find such methods of applying such technologies that will give maximum performance. The paper discusses various AI technologies, as well as approaches to the implementation of computer-aided design based on it. Keywords Artificial intelligence, neural network, convolutional neural network, deep learning, object recognition, machine vision, process design automation.
RkJQdWJsaXNoZXIy MTk0ODM1