OBRABOTKAMETALLOV Vol. 24 No. 2 2022 24 TECHNOLOGY 5. Wei G., Tan Q. Measurement of shaft diameters by machine vision. Applied Optics, 2011, vol. 50, iss. 19, pp. 3246–3253. DOI: 10.1364/AO.50.003246. 6. Syusyuka E.N., Amineva E.Kh. Control of mobile equipment for the processing of marine shaft lines. Journal of Physics: Conference Series, 2021, vol. 2061, p. 012083. DOI: 10.1088/1742-6596/2061/1/012083. 7. Syusyuka E.N. Possibility of applying X-ray methods to control the surface quality of a shaft line after fi nishing. Journal of Physics: Conference Series, 2021, vol. 2061, p. 012022. DOI: 10.1088/1742-6596/2061/1/012022. 8. Zheng K., Zhang Y., Zhao C., Liu L. Rotary kiln cylinder deformation measurement and feature extraction based on EMD method. Engineering Letters, 2015, vol. 23, iss. 4, pp. 283–291. 9. Mogilny S., Sholomitskii A. Precision analysis of geometric parameters for rotating machines during cold alignment. Procedia Engineering, 2017, vol. 206, pp. 1709–1715. DOI: 10.1016/j.proeng.2017.10.702. 10. Li M., Yu J.P. Status and development of geometric measurement in industry. Chinese Journal of Scientifi c Instrument, 2017, vol. 38, iss. 12, pp. 2959–2971. (In Chinese). 11. Conte J., Santolaria J., Majarena A.C., Brau А., Aguilar J.J. Identifi cation and kinematic calculation of laser tracker errors. Procedia Engineering, 2013, vol. 63, pp. 379–387. DOI: 10.1016/j.proeng.2013.08.190. 12. Farooqui S.A., Doiron T., Sahay C. Uncertainty analysis of cylindricity measurements using bootstrap method. Measurement, 2009, vol. 42, iss. 4, pp. 524–531. DOI: 10.1016/j.measurement.2008.09.008. 13. Koziołek S., Derlukiewicz D., Ptak M. Design process innovation of mechanical objects with the use of design for Six Sigma methodology. Solid State Phenomena, 2010, vol. 165, pp. 274–279. DOI: 10.4028/www.scientifi c.net/ ssp.165.274. 14. Liu Y., Cheung C.F., Feng X., Wang C.J., Leach R.K. A self-calibration rotational stitching method for precision measurement of revolving surfaces. Precision Engineering, 2018, vol. 54, pp. 60–69. DOI: 10.1016/j. precisioneng.2018.05.002. 15. Ramaswami H., Kanagaraj S., Anand S. An inspection advisor for form error in cylindrical features. International Journal of Advanced Manufacturing Technology, 2009, vol. 40, pp. 128–143. DOI: 10.1007/s00170007-1321-4. 16. Peng J., Chen D., Guo H., Zhong J., Yu Y. Variable optical null based on a yawing CGH for measuring steep acylindrical surface. Optics Express, 2018, vol. 26, iss. 16, pp. 20306–20318. DOI: 10.1364/OE.26.020306. 17. Zhao Z., Li B., Zhang G.,.Yu H, Shang M. Infl uence of eccentricity and tilt of cylindrical part’s axis on the measurement results of its diameters. Measurement, 2019, vol. 138, pp. 232–239. DOI: 10.1016/j. measurement.2019.01.085. 18. Stamboliska Z., Rusinski E., Moczko P. Proactive condition monitoring of low-speed machines. Cham, Springer International Publishing, 2015, pp. 53–68. ISBN 978-3319104935, ISBN 3319104934. 19. Li X., Shen Y., Wang S. Dynamic modeling and analysis of the large-scale rotary machine with multisupporting. Shock and Vibration, 2011, vol. 18, pp. 53–62. DOI: 10.1155/2011/541049. 20. Zheng K., Zhang Y., Liu L., Zhao C. An online straightness deviation measurement method of rotary kiln cylinder. Tehnicki Vjesnik, 2017, vol. 24 (5), pp. 1297–1305. DOI: 10.17559/TV-20150426160032. 21. Žiga A., Karač A., Vukojević D. Analytical and numerical stress analysis of the rotary kiln ring. Tehnicki Vjesnik, 2013, vol. 20, pp. 941–946. 22. GuoY.,WangY., Liu X. Real-time optical detection system for monitoring roller condition with automatic error compensation. Optics and Lasers in Engineering, 2014, vol. 53, pp. 69–78. DOI: 10.1016/j.optlaseng.2013.08.007. 23. Timofeev S.P., Khurtasenko A.V., Shrubchenko I.V., Voronkova M.N., Grinek A.V. Izmeritel’noe ustroistvo dlya opredeleniya formy poverkhnostei krupnogabaritnykh detalei – tel vrashcheniya [The measuring device for determining the surface shape of large size parts of rotation type]. Patent RF, no. 161400, 2016. 24. Grinek A.V., Timofeev S.P., Kondrat’ev S.I., Hurtasenko A.V. Sposob kontrolya parametrov geometricheskoi tochnosti sudovykh valoprovodov [Method of controlling geometric accuracy for ship shafts]. Morskie intellektual’nye tekhnologi = Marine Intellectual Technologies, 2020, no. 3, pt. 1, pp. 90–97. DOI: 10.37220/MIT.2020.49.3.011. Confl icts of Interest The authors declare no confl ict of interest. 2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1