OBRABOTKAMETALLOV Vol. 24 No. 2 2022 38 TECHNOLOGY 3. Thomason J. A review of the analysis and characterisation of polymeric glass fi bre sizings. Polymer Testing, 2020, vol. 85, p. 106421. DOI: 10.1016/j.polymertesting.2020.106421. 4. Shlykov E.S., Ablyaz T.R., Oglezneva S.A. Electrical discharge machining of polymer composites. Russian Engineering Research, 2020, vol. 40, pp. 878–879. DOI: 10.3103/S1068798X20100275. 5. Ablyaz T.R., Muratov K.R., Shlykov E.S., Shipunov G.S., Shakirzyanov T.V. Electric-discharge machining of polymer composites. Russian Engineering Research, 2019, vol. 39, pp. 898–900. DOI: 10.3103/S1068798X19100058. 6. Ablyaz T.R., Shlykov E.S., Muratov K.R., Sidhu S.S. Analysis of wire-cut electro discharge machining of polymer composite materials. Micromachines, 2021, vol. 12 (5), p. 571. DOI: 10.3390/mi12050571. 7. Yilmaz O., Okka M.A. Effect of single and multi-channel electrodes application on EDM fast hole drilling performance. The International Journal of Advanced Manufacturing Technology, 2010, vol. 51, pp. 185–194. DOI: 10.1007/s00170-010-2625-3. 8. Bozdana A.T., Ulutas T. The effectiveness of multichannel electrodes on drilling blind holes on Inconel 718 by EDM process. Materials and Manufacturing Processes, 2016, vol. 31, pp. 504–513. DOI: 10.1080/10426914.20 15.1059451. 9. Haas P., Pontelandolfo P., Perez R. Particle hydrodynamics of the electrical discharge machining process. Pt. 1: Physical considerations and wire EDM process improvement. Procedia CIRP, 2013, vol. 6, pp. 41–46. DOI: 10.1016/j.procir.2013.03.006. 10. Okada A., Uno Y., Onoda S., Habib S. Computational fl uid dynamics analysis of working fl uid fl ow and debris movement in wire EDMed kerf. CIRP Annals – Manufacturing Technology, 2009, vol. 58, pp. 209–212. DOI: 10.1016/j.cirp.2009.03.003. 11. Takino H., Han F. Cutting of polished single-crystal silicon by wire electrical discharge machining using antielectrolysis pulse generator. Proceedings of the 14th International Conference of the European Society for Precision Engineering and Nanotechnology, Dubrovnik, Croatia, 2014, vol. 2, pp. 59–62. 12. Wang J., Han F. Simulation model of debris and bubble movement in consecutive-pulse discharge of electrical discharge machining. International Journal of Machine Tools and Manufacture, 2014, vol. 77, pp. 56–65. DOI: 10.1016/j.ijmachtools.2013.10.007. 13. Schumacher B.M. About the role of debris in the gap during electrical discharge machining. CIRP Annals – Manufacturing Technology, 1990, vol. 39, pp. 197–199. DOI: 10.1016/S0007-8506(07)61034-8. 14. Su J.C., Kao J.Y., TangY.S. Optimisation of the electrical dischargemachining process using a GA-based neural network. International Journal of Advanced Manufacturing Technology, 2004, vol. 24, pp. 81–90. DOI: 10.1007/ s00170-003-1729-4. 15. Maradia U., Wegener K., Stirnimann J., Knaak R., Boccadoro M. Investigation of the scaling effects in mesomicro EDM. ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, 2013, vol. 2B, p. 63160. DOI: 10.1115/IMECE2013-63160. 16. Wang J., Chen W., Gao F., Han F. A new electrode sidewall insulation method in electrochemical drilling. International Journal of Advanced Manufacturing Technology, 2014, vol. 75, pp. 21–32. DOI: 10.1007/s00170-0146131-x. 17. Wang Y.Q., Cao M.R., Yang S.Q., Li W.H. Numerical simulation of liquid-solid two-phase fl ow fi eld in discharge gap of high-speed small hole EDM drilling. Advanced Materials Research, 2008, vol. 53–54, pp. 409–414. DOI: 10.4028/www.scientifi c.net/AMR.53-54.409. 18. Kliuev M., Baumgart C., Wegener K. Fluid dynamics in electrode fl ushing channel and electrode-workpiece gap during EDM drilling. Procedia CIRP, 2018, vol. 68, pp. 254–259. DOI: 10.1016/j.procir.2017.12.058. 19. Ablyaz T.R., Shlykov E.S., MuratovK.R. Improving the effi ciency of electrical dischargemachining of specialpurpose products with composite electrode tools. Materials, 2021, vol. 14, p. 6105. DOI: 10.3390/ma14206105. Confl icts of Interest The authors declare no confl ict of interest. 2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1