Obrabotka Metallov 2022 Vol. 24 No. 2

OBRABOTKAMETALLOV Vol. 24 No. 2 2022 66 TECHNOLOGY 24. Sundukov S.K., Nigmetzyanov R.I., Fatyukhin D.S. Ul’trazvukovye tekhnologii pri poluchenii neraz”emnykh soedinenii. Obzor. Ch. 2 [Ultrasonic technologies in the production of permanent joints. Review. Pt. 2]. Tekhnologiya metallov = Metall Technology, 2021, vol. 9, pp. 2–8. DOI: 10.31044/1684-2499-2021-0-9-2-8. 25. Rusinko A. Analytical description of ultrasonic hardening and softening. Ultrasonics, 2011, vol. 51, iss. 6, pp. 709–714. DOI: 10.1016/j.ultras.2011.02.003. 26. Kazantsev V.F., Luzhnov Yu.M., Nigmetzyanov R.I., Sundukov S.K., Fatyukhin D.S. Vybor i optimizatsiya rezhimov ul’trazvukovogo poverkhnostnogo deformirovaniya [Selection and optimization of ultrasonic surface deformation]. Vestnik Moskovskogo avtomobil’no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI), 2016, no. 4, pp. 26–32. (In Russian). 27. Gao H., Dutta R.K., Huizenga R.M., AmirthalingamM., Hermans M.J.M., Buslaps T., Richardson I.M. Stress relaxation due to ultrasonic impact treatment on multi-pass welds. Science and Technology of Welding and Joining, 2014, vol. 19, iss. 6, pp. 505–513. DOI: 10.1179/1362171814Y.0000000219. 28. Frolov V.V., ed. Teoriya svarochnykh protsessov [Theory of welding processes]. Moscow, Vysshaya shkola Publ., 1988. 559 p. ISBN 5-06-001473-8. 29. Rosenberg L.D. Fizika i tekhnika moshchnogo ul’trazvuka. T. 3. Fizicheskie osnovy ul’trazvukovoi tekhnologii [Physics and technology of powerful ultrasound. Vol. 3. Physical foundations of ultrasonic technology]. Moscow, Nauka Publ., 1970. 689 p. 30. Rozenberg L.D. On the physics of ultrasonic cleaning. Ultrasonic News, 1960, vol. 4, iss. 4, pp. 16–20. 31. Mason T.J. Ultrasonic cleaning: An historical perspective. Ultrasonics Sonochemistry, 2016, vol. 29, pp. 519– 523. DOI: 10.1016/j.ultsonch.2015.05.004. 32. Nikitenko S.I., Pfl ieger R.. Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions. Ultrasonics Sonochemistry, 2017, vol. 35, pp. 623–630. DOI: 10.1016/j.ultsonch.2016.02.003. 33. Szala M., Walczak M., Latka L., Winnicki M. Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals, 2020, vol. 10, iss. 7, p. 856. DOI: 10.3390/met10070856. 34. Nolting B.E., Neppiras E.A. Cavitation produced by ultrasonics. Proceedings of the Physical Society. Section B, 1950, vol. 63, iss. 9, p. 674. 35. Fatyukhin D.S., Nigmetzyanov R.I., PrikhodkoV.M., SukhovA.V., Sundukov S.K.Acomparison of the effects of ultrasonic cavitation on the surfaces of 45 and 40Kh steels. Metals, 2022, vol. 12, iss. 1, p. 138. DOI: 10.3390/ met12010138. 36. Prikhodko V.M., Buslaev A.P., Norkin S.B., Yashina M.V. Modelling of cavitational erosion in the area of surfaces of smooth contact. Ultrasonics Sonochemistry, 2001, vol. 8, iss. 1, pp. 59–67. DOI: 10.1016/S13504177(99)00048-6. 37. Lais H., Lowe P.S., Gan T.-H., Wrobel L.C. Numerical modelling of acoustic pressure fi elds to optimize the ultrasonic cleaning technique for cylinders. Ultrasonics Sonochemistry, 2018, vol. 45, pp. 7–16. DOI: 10.1016/j. ultsonch.2018.02.045. Confl icts of Interest The author declare no confl ict of interest.  2022 The Author. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1