Obrabotka Metallov 2022 Vol. 24 No. 3

OBRABOTKAMETALLOV Vol. 24 No. 3 2022 101 MATERIAL SCIENCE References 1. Bataeva Z.B., Ruktuev A.A., Ivanov I.V., Yurgin A.B., Bataev I.A.Obzor issledovanii splavov, razrabotannykh na osnove entropiinogo podkhoda [Review of alloys developed using the entropy approach]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 2, pp. 116–146. DOI: 10.17212/1994-6309-2021-23.2-116-146. 2. Zhang F., Lou H., Cheng B., Zeng Z., Zeng Q. High-pressure induced phase transitions in high-entropy alloys: a review. Entropy, 2019, vol. 21 (3). DOI: 10.3390/e21030239. 3. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. Journal of Alloys and Compounds, 2014, vol. 589, pp. 143–152. DOI: 10.1016/j.jallcom.2013.11.084. 4. WangW.R.,WangW.L.,Wang S.C., TsaiY.C., Lai C.H.,Yeh J.W. Effects ofAl addition on themicrostructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012, vol. 26, pp. 44–51. DOI: 10.1016/j. intermet.2012.03.005. 5. Gromov V.E., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Berlin, Springer, 2021. 110 p. 6. Tang Q.H., Huang Y., Huang Y.Y., Liao X.Z., Langdon T.G., Dai P.Q. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Materials Letters, 2015, vol. 151, pp. 126–129. DOI: 10.1016/j.matlet.2015.03.066. 7. Sourav A., Yebaji S., Thangaraju S. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Materials Science and Engineering A, 2020, vol. 793, pp. 139–877. DOI: 10.1016/j.msea.2020.139877. 8. Ma Y., Jiang B., Li C., Wang Q., Dong C., Liaw P.K., Xu F., Sun L. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals, 2017, vol. 7 (2). DOI: 10.3390/met7020057. 9. Zhu Z., Yang T., Shi R., Quan X., Zhang J., Qiu R., Song B., Liu Q. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy. Metals, 2021, vol. 11 (6). DOI: 10.3390/met11060940. 10. Ashiotis G., Deschildre A., Nawaz Z., Wright J.P., Karkoulis D., Picca F.E., Kieffer J. The fast azimuthal integration Python library: pyFAI. Journal of Applied Crystallography, 2015, vol. 48 (2), pp. 510–519. 11. Forouzanmehr N., Nili M., Bönisch M. The analysis of severely deformed pure Fe structure aided by Xray diffraction profi le. The Physics of Metals and Metallography, 2016, vol. 117 (6), pp. 624–633. DOI: 10.1134/ S0031918X16060077. 12. Ungár T., Holden T.M., Jóni B., Clausen B., Balogh L., Csiszár G., Brown D.W. Dislocation structure in different texture components determined by neutron diffraction line profi le analysis in a highly textured Zircaloy-2 rolled plate. Journal of Applied Crystallography, 2015, vol. 48, pp. 409–417. DOI: 10.1107/S160057671500133. 13. Gubicza J. X-ray line profi le analysis in materials science. Hershey, PA, Engineering Science Reference, an imprint of IGI global, 2014. 343 p. 14. Ungár T., Ott S., Sanders P.G., Borbély A., Weertman J.R. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profi le analysis. Acta Materialia, 1998, vol. 46, no. 10, pp. 3693–3699. 15. Ivanov I.V., Lazurenko D.V., Stark A., Pyczak F., Thömmes A., Bataev I.A. Application of different diffraction peak profi le analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium. Metals and Materials International, 2020, vol. 26 (1), pp. 83–93. DOI: 10.1007/s12540-019-00309-z. 16. Ungár T., Dragomir I., Révész Á., Borbély A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. Journal of Applied Crystallography, 1999, vol. 32, pp. 992–1002. 17. Ungár T., Borbély A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profi le analysis. Applied Physics Letters, 1996, vol. 69 (21), pp. 3173–3175. 18. Dragomir I.C., Ungár T. Contrast factors of dislocations in the hexagonal crystal system. Journal of Applied Crystallography, 2002, vol. 35 (5), pp. 556–564. 19. Ungár T. Dislocation model of strain anisotropy. Powder Diffraction, 2008, vol. 23 (2), pp. 125–132. DOI: 10.1154/1.2918549. 20. Shao Q.Q., Liu L.H., Fan T.W., Yuan D.W., Chen J.H. Effects of solute concentration on the stacking fault energy in copper alloys at fi nite temperatures. Journal of Alloys and Compounds, 2017, vol. 726, pp. 601–607. 21. Yu P., Feng R., Du J., Shinzato S., Chou J.P., Chen B., LoY.C., Liaw P.K., Ogata S., HuA. Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl0.36 high entropy alloy. Acta Materialia, 2019, vol. 181, pp. 491–500. DOI: 10.1016/j.actamat.2019.10.012.

RkJQdWJsaXNoZXIy MTk0ODM1