Obrabotka Metallov 2022 Vol. 24 No. 3

OBRABOTKAMETALLOV Vol. 24 No. 3 2022 39 TECHNOLOGY 3. JeongW., Shin J. Grinding effect analysis according to control variables of compact rail surface grindingmachine. Journal of the Korean Society for Railway, 2020, vol. 23, iss. 7, pp. 688–695. DOI: 10.7782/JKSR.2020.23.7.688. 4. Zakharov S., Kharris W.J., Landgren J., H. Tourny, Ebersöhn W. Guidelines to Best practices For heavy haul Railway operations: Wheel and rail Interface issues. Virginia Beach, Va., International Heavy Haul Association, 2001 (Russ. ed.: Kharris U.Dzh., Zakharov S.M., Landgren Dzh., Turne Kh., Ebersen V. Obobshchenie peredovogo opyta tyazhelovesnogo dvizheniya: voprosy vzaimodeistviya kolesa i rel’sa. Moscow, Intekst Publ., 2002. 408 p. ISBN 978-5-89277-037-0). 5. Ilinykh A.S., Bondarev E.S. Otechestvennyi i zarubezhnyi opyt organizatsii i planirovaniya rabot po shlifovaniyu rel’sov [The national and overseas experience to organizing and planning works of the griding rails]. Fundamental’nye i prikladnye voprosy transporta = Fundamental and Applied Issues of Transport, 2021, no. 1 (2), pp. 11–24. DOI: 10.52170/2712-9195/2021_2_11 6. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway. Journal of Mechanical Engineering, 2018, vol. 54, iss. 22, pp. 184–193. DOI: 10.3901/JME.2018.22.184. 7. Lin F., Wang S., Zhang H., Hu W. Design method of rail grinding target profi le based on non–uniform rational B-spline. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, vol. 235, iss. 8, pp. 946–956. DOI: 10.1177/0954409720972819. 8. Uhlmann E., Lypovka P., Hochschild L., Schröer N. Infl uence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear, 2016, vol. 366–367, pp. 287–293. DOI: 10.1016/j.wear.2016.03.023. 9. Ilinykh A., Matafonov A., Yurkova E. Effi ciency of the production process of grinding rails on the basis of optimizing the periodicity of works. Advances in Intelligent Systems and Computing, 2019, vol. 2, pp. 672–681. DOI: 10.1007/978-3-030-37919-3_67. 10. Suslov A.G., Bishutin S.G., Zakharov L.A. Innovatsionnye tekhnologii rel’soobrabotki vysokoskorostnykh zheleznykh dorog [Innovation technologies of rail working for high-speed railways]. Naukoemkie tekhnologii v mashinostroenii = Science Intensive Technologies in Mechanical Engineering, 2020, no. 8, pp. 11–17. DOI: 10.30987/2223-4608-2020-8-11-17. 11. Schoch W. Grinding of rails on high–speed railway lines: a matter of great importance. Rail Engineering International, 2007, vol. 36, iss. 1, pp. 6–8. 12. Funke H. Rail grinding. Berlin, Transpress, 1986. 153 p. 13. Taubert M., Püschel A. Speed grinding rail. International Railway Journal, 2009, no. 7, pp. 31–33. 14. Skorostnoe shlifovanie rel’sov [Speed rail grinding]. Zheleznye dorogi mira = Railways of the World, 2010, no. 7, pp. 68–71. 15. Vysokoskorostnoe shlifovanie rel’sov [High-speed rail grinding]. Zheleznye dorogi mira = Railways of the World, 2011, no. 8, pp. 62–66. 16. Ilinykh A.S., Banul V.V. Sposob obrabotki poverkhnosti golovki rel’sa i ustroistvo dlya ego osushchestvleniya [Method of processing head rail surface and device for implementation]. Patent RF, no. 2759298, 2021. 17. Aksenov V.A., Ilinykh A.S., Galay M.S. Matafonov A.V. Osobennosti formirovaniya tekhnologicheskogo protsessa ploskogo shlifovaniya tortsom kruga pri uprugoi podveske shlifoval’noi golovki [Features of formation of the fl at grinding technological process by an end face of a circle with an elastic suspension grinding head]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2016, vol. 18, no. 4, pp. 34–47. DOI: 10.15593/22249877/2016.4.03. 18. DomanD.,WarkentinA., Bauer R.Asurvey of recent grindingwheel topographymodels. International Journal of Machine Tools and Manufacture, 2006, vol. 46, iss. 3, pp. 343–352. DOI: 10.1016/j.ijmachtools.2005.05.013. 19. Zenga W., Lib Z., Peib Z., Treadwell C. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. International Journal of Machine Tools and Manufacture, 2005, vol. 45, iss. 12–13, pp. 1468–1473. 20. Liu P., Zou W., Peng J., Song X., Xiao F. Designed a passive grinding test machine to simulate passive grinding process. Processes, 2021, vol. 9, iss. 8, p. 1317. DOI: 10.3390/pr9081317. 21. Liu P., Zou W., Peng J., Song X., Xiao F. Study on the effect of grinding pressure on material removal behavior performed on a self–designed passive grinding simulator. Applied Sciences. 2021, vol. 11, iss. 9, pp. 4128. DOI:10.3390/app11094128. Confl icts of Interest The authors declare no confl ict of interest.  2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1