Obrabotka Metallov 2022 Vol. 24 No. 3

OBRABOTKAMETALLOV Vol. 24 No. 3 2022 74 MATERIAL SCIENCE deformiruemost’ i funktsional’nye svoistva splava Ti-Ni s pamyat’yu formy [Infl uence of electroplastic deformation modes on deformability and functional properties of Ti-Ni shape memory alloy]. Zhurnal funktsional’nykh materialov = Journal of functional materials, 2008, vol. 2, no. 4, pp. 130–137. 3. Potapova A.A., Stolyarov V.V., Bondarev A.B., Andreev V.A. Issledovanie vozmozhnosti primeneniya elektroplasticheskoi prokatki dlya polucheniya prutkov iz splava TiNi [Investigation of the possibility of using electroplastic rolling to obtain bars from the TiNi alloy]. Mashinostroenie i inzhenernoe obrazovanie = Mechanical Engineering and Engineering Education, 2012, no. 2, pp. 33–38. 4. Medentsov V.E., Stolyarov V.V. Osobennosti deformirovaniya, struktura i mekhanicheskie svoistva splava VT6 pri elektroplasticheskoi prokatke [Peculiarities of deformation, structure and mechanical properties of VT6 alloy during electroplastic rolling]. Deformatsiya i razrushenie materialov = Deformation and Fracture of Materials, 2012, no. 12, pp. 37–41. 5. Brodova I.G., Shirinkina I.G., Astaf’ev V.V., Yablonskikh T.I., Potapova A.A., Stolyarov V.V. Effect of pulsed current on structure of Al–Mg–Si aluminum-based alloy during cold deformation. Physics of Metals and Metallography, 2013, vol. 114 (11), pp. 940–946. DOI: 10.1134/S0031918X13110021. 6. Ivanov A.M., Ugurchiev U.Kh., Stolyarov V.V., Petrova N.D., Platonov A.A. Kombinirovanie metodov intensivnoi plasticheskoi deformatsii konstruktsionnykh stalei [Combination of severe plastic deformation methods of structure steels]. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya = Izvestiya. Ferrous Metallurgy, 2012, no. 6, pp. 54–57. 7. Xu Z., Tang G., Tian S., Ding F., Tian H. Research of electroplastic rolling of AZ31 Mg alloy strip. Journal of Materials Processing Technology, 2007, vol. 182 (1–3), pp. 128–133. DOI: 10.1016/j.jmatprotec.2006.07.019. 8. Qian L., Zhan L., Zhou B., Zhang X., Liu S., Lv Z. Effects of electroplastic rolling on mechanical properties and microstructure of low-carbon martensitic steel. Materials Science and Engineering: A, 2021, vol. 812, p. 141144. DOI: 10.1016/j.msea.2021.141144. 9. Zhu R.F., Tang G.Y., Shi S.Q., Fu M.W. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy. Materials and Design, 2013, vol. 44, pp. 606–611. DOI: 10.1016/j.matdes.2012.08.045. 10. Guan L., Tang G., Chu P.K. Recent advances and challenges in electroplastic manufacturing processing of metals. Journal of Materials Research, 2010, vol. 25 (7), pp. 1215–1224. DOI: 10.1557/JMR.2010.0170. 11. Zhu R., Tang G., Shi S., Fu M. Effect of electroplastic rolling on deformability and oxidation of NiTiNb shape memory alloy. Journal of Materials Processing Technology, 2013, vol. 213 (1), pp. 30–35. DOI: 10.1016/j. jmatprotec.2012.08.001. 12. Mal’tsev I.M. Electroplastic rolling of metals with a high-density current. Russian Journal of Non-Ferrous Metals, 2008, vol. 49, pp. 175–180. DOI: 10.3103/S1067821208030097. 13. Li X.,Wang F., Li X., Tang G., Zhu J. Improvement of formability of Mg–3Al–1Zn alloy strip by electroplasticdifferential speed rolling. Materials Science and Engineering: A, 2014, vol. 618, pp. 500–504. DOI: 10.1016/j. msea.2014.09.060. 14. Guo D.F., Deng W.K., Song P., Lv X.L., Shi Y., Qu Z.H., Zhang G.S. Effect of strain rate on microstructure and mechanical properties of electroplastic rolled ZrTi alloy. Advanced Engineering Materials, 2022, p. 202101366. DOI: 10.1002/adem.202101366. 15. Tiwari J., Pratheesh P., Bembalge O.B., Krishnaswamy H., Amirthalingam M., Panigrahi S.K. Microstructure dependent electroplastic effect in AA 6063 alloy and its nanocomposites. Journal of Materials Research and Technology, 2021, vol. 12, pp. 2185–2204. DOI: 10.1016/j.jmrt.2021.03.112. 16. Komarov V.S., Khmelevskaya I., Karelin R., Kawalla R., Korpala G., Prahl U., Prokoshkin S. Deformation behavior, structure, and properties of an aging Ti-Ni shape memory alloy after compression deformation in a wide temperature range. JOM, 2021, vol. 73 (2), pp. 620–629. DOI: 10.1007/s11837-020-04508-7. 17. Karelin R.D., Khmelevskaya I.Y., Komarov V.S., Andreev V.A., Perkas M.M., Yusupov V.S., Prokoshkin S.D. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys. Journal of Materials Engineering and Performance, 2021, vol. 30 (4), pp. 3096–3106. DOI: 10.1007/s11665-02105625-3. 18. Babacan N., Bilal M., Hayrettin C., Liu J., Benafan O., Karaman I. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Materialia, 2018, vol. 157, pp. 228–244. DOI: 10.1016/j.actamat.2018.07.009. 19. Tong Y., Shuitcev A., Zheng Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Advanced Engineering Materials, 2020, vol. 22 (4). DOI: 10.1002/ adem.201900496.

RkJQdWJsaXNoZXIy MTk0ODM1