Obrabotka Metallov 2022 Vol. 24 No. 4

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 110 EQUIPMENT. INSTRUMENTS metal-cutting machines]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering, 2021, no. 5 (734), pp. 24–36. DOI: 10.18698/0536-1044-2021-5-24-36. 6. Zakovorotny V.L., Gvindjiliya V.E. Sinergeticheskii podkhod k povysheniyu effektivnosti upravleniya protsessami obrabotki na metallorezhushchikh stankakh [Synergetic approach to improve the effi ciency of machining process control on metal-cutting machines]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 84–99. DOI: 10.17212/1994-6309-2021-23.3-84-99. 7. Zakovorotny V., Gvindjiliya V. Process control synergetics for metal-cutting machines. Journal of Vibration Engineering, 2022, vol. 24 (1), pp. 177–189. DOI: 10.21595/jve.2021.22087. 8. Zakovorotny V.L. Nelineinaya tribomekhanika [Nonlinear tribomechanics]. Rostov-on-Don, Don State Technical University Publ., 2000. 293 p. 9. Ryzhkin A.A. Sinergetika iznashivaniya instrumental’nykh materialov pri lezviinoi obrabotke [Synergetics of tool wear in cutting edge treatment]. Rostov-on-Don, Don State Technical University Publ., 2019. 289 p. ISBN 9785-7890-1669-5. 10. Kabaldin Yu.G., Shatagin D.A. Artifi cial intelligence and cyberphysical machining systems in digital production. Russian Engineering Research, 2020, vol. 40, no. 4, pp. 292–296. DOI: 10.3103/S1068798X20040115. Translated from Vestnik mashinostroeniya, 2020, no. 1, pp. 21–25. 11. Altintas Y., Kersting P., Biermann D., Budak E., Denkena B. Virtual technological systems for parts processing operations. CIRP Annals, 2014, vol. 63 (2), pp. 585–605. DOI: 10.1016/j.cirp.2014.05.007. 12. Arrazola P., Ozel T., Umbrello D., Davies M., Jawahir I. Recent advances in modelling of metal machining processes. CIRP Annals, 2013, vol. 62 (2), pp. 695–718. DOI: 10.1016/j.cirp.2013.05.006. 13. Pantyukhin O.V., Vasin S.A. Tsifrovoi dvoinik tekhnologicheskogo protsessa izgotovleniya izdelii spetsial’nogo naznacheniya [Digital double of the technological process of manufacturing special-purpose products]. Stankoinstrument, 2021, no. 1 (22), pp. 56–59. DOI: 10.1016/j.cirp.2013.05.006. (In Russian). 14. Altintas Y., Brecher C., Weck M., Witt S. Virtual machine tool. CIRP Annals, 2005, vol. 54 (2), pp. 115–138. DOI: 10.1016/S0007-8506(07)60022-5. 15. Erkorkmaz K., Altintas Y., Yeung C.-H. Virtual computer numerical control system. CIRP Annals, 2006, vol. 55 (1), pp. 399–402. DOI: 10.1016/S0007-8506(07)60444-2. 16. Ahamed As., Ahamed At., Katuwawala D., Ee T.T., Tan Z.H., Bajaj I.S., Wickramasurendra Th., Namazi H. Complexity-based analysis of the infl uence of machining parameters on the surface fi nish of drilled holes in drilling operation. Fractals, 2019, vol. 27 (6), p. 1950087. DOI: 10.1142/S0218348X19500877. 17. Kilic Z.M., Altintas Y. Generalized mechanics and dynamics of metal cutting operations for unifi ed modeling. International Journal of Machine Tools and Manufacture, 2016, vol. 104, pp. 1–13. DOI: 10.1016/j. ijmachtools.2016.01.006. 18. Estman L., Merdol D., Brask K.-G., Kalhori V., Altintas Y. Developing strategies for machining aerospace components using virtual machining tools. New Production Technologies in Aerospace Industry. Cham, Springer, 2014, pp. 63–68. DOI: 10.1007/978-3-319-01964-2_9. 19. Yangui H., Zghal B., Kessentini A., Chevallier G., Rivière A., Haddar M., Karra Ch. Infl uence of cutting and geometrical parameters on the cutting force in milling. Engineering, 2010, vol. 2 (10), pp. 751–761. DOI: 10.4236/ eng.2010.210097. 20. Thasana W., Chianrabutra S. A comparison between simulation and experiment of virtual machining in CNC turning machine considering kinematic motion deviations, tool wear and workpiece defl ection errors. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2019, vol. 13 (1), p. 18-00250. DOI: 10.1299/ jamdsm.2019jamdsm0009. 21. Thasana W., Sugimura N., Iwamura K., Tanimizu Y. A study on estimation of three-dimensional tolerances based on simulation of virtual machining in turning processes including kinematic motion deviations. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2015, vol. 9 (1), p. 14-00507. DOI: 10.1299/ jamdsm.2015jamdsm0012. 22. Studiyanti L. Workstation and posture improvement in cutting machine process using virtual modeling. IOP Conference Series: Materials Science and Engineering, 2021, vol. 1072, p. 012032. DOI: 10.1088/1757899X/1072/1/012032. 23. Soori M., Arezoo B. Virtual machining systems for CNC milling and turning machine tools: a review. International Journal of Engineering and Technology, 2020, vol. 18, pp. 56–104. 24. Liu H., Xu X., Zhang J., Liu Z., He Y., Zhao W., Liu Z.-q. The state of the art for numerical simulations of the effect of the microstructure and its evolution in the metal-cutting processes. International Journal of Machine Tools and Manufacture, 2022, vol. 177, p. 103890. DOI: 10.1016/j.ijmachtools.2022.103890.

RkJQdWJsaXNoZXIy MTk0ODM1