Obrabotka Metallov 2022 Vol. 24 No. 4

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 136 MATERIAL SCIENCE References 1. Rybalka K.V., Beketaeva L.A., Davydov A.D. Opredelenie skorosti korrozii stali AISI 304 v rastvorakh HCl metodom izmereniya omicheskogo soprotivleniya issleduemogo obraztsa [Determination of AISI 304 steel corrosion rate in the HCl solutions by the method of measuring specimen ohmic resistance]. Elektrokhimiya = Russian Journal of Electrochemistry, 2019, vol. 55, no. 9, pp. 1147–1152. DOI: 10.1134/S0424857019080139. (In Russian). 2. Frutos A. de, Arenas M.A., Fuentes G.G., Rodríguez R.J., Martínez R., Avelar-Batista J.C., Damborenea J.J. de. Tribocorrosion behaviour of duplex surface treated AISI 304 stainless steel. Surface and Coatings Technology, 2010, vol. 204, no. 9–10, pp. 1623–1630. DOI: 10.1016/j.surfcoat.2009.10.039. 3. Shtefan V.V., Kanunnikova N.A. Oxidation of AISI 304 steel in Al- and Ti-containing solutions. Fizikokhimiya poverkhnosti i zashchita materialov = Protection of Metals and Physical Chemistry of Surfaces, 2020, vol. 56, no. 2, pp. 202–207. DOI: 10.31857/S0044185620020230. (In Russian). 4. Qi C., Zhan X., Gao Q., Liu L., Song Y., Li Y. The infl uence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding. Optics and Laser Technology, 2019, vol. 119, p. 105572. DOI: 10.1016/j.optlastec.2019.105572. 5. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, pp. 472– 478. DOI: 10.1016/j.ijrmhm.2008.10.008. 6. Yan G., Zheng M., Ye Z., Gu J., Li C., Wu C., Wang B. In-situ Ti (C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding. Journal of Alloys and Compounds, 2021, vol. 886, p. 161252. DOI: 10.1016/J.JALLCOM.2021.161252. 7. Liu X.B., Wang H.M. Microstructure, wear and high-temperature oxidation resistance of laser clad Ti5Si3/γ/ TiSi composite coatings on γ-TiAl intermetallic alloy. Surface and Coatings Technology, 2006, vol. 200, no. 14–15, pp. 4462–4470. DOI: 10.1016/j.surfcoat.2005.03.006. 8. Su W., Cui X., Yang Y., Guan Y., Zhao Y., Wan S., Li J., Jin G. Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings. Surface and Coatings Technology, 2021, vol. 418, p. 127281. DOI: 10.1016/j.surfcoat.2021.127281. 9. Bauer P.-P., Swadźba R., Klamann L., Laska N. Aluminum diffusion inhibiting properties of Ti5Si3 at 900 °C and its benefi cial properties on Al-rich oxidation protective coatings on γ-TiAl. Corrosion Science, 2022, vol. 201, p. 110265. 10. Liu Y.F., Zhou Y.L., Zhang Q., Pu F., Li R.H., Yang S.Z. Microstructure and dry sliding wear behavior of plasma transferred arc clad Ti5Si3 reinforced intermetallic composite coatings. Journal of Alloys and Compounds, 2014, vol. 591, pp. 251–258. DOI: 10.1016/J.JALLCOM.2013.12.225. 11. Burkov A.A., Kulik M.A., Krutikova V.O. Kharakteristika Ti–Si-pokrytii na splave Ti6Al4V, osazhdennykh elektroiskrovoi obrabotkoi v srede granul [Characteristics of Ti–Si coatings on Ti6Al4V alloy subjected to electrospark granules deposition]. Tsvetnye Metally, 2019, no. 4, pp. 54–59. DOI: 10.17580/tsm.2019.04.07. (In Russian). 12. Pliszka I., Radek N. Corrosion resistance of WC-Cu coatings produced by electrospark deposition. Procedia Engineering, 2017, vol. 192, pp. 707–712. DOI: 10.1016/j.proeng.2017.06.122. 13. Palatnik L.S. Fazovye prevrashcheniya pri elektroiskrovoi obrabotke metallov i opyt ustanovleniya kriteriya nablyudaemykh vzaimodeistvii [Phase transformations at electrospark machining of metals and experience of establishing the criterion of observed interactions]. Doklady Akademii nauk SSSR, 1953, vol. 89, no. 3, pp. 455–458. (In Russian). 14. Burkov A.A. Poluchenie amorfnykh pokrytii elektroiskrovoi obrabotkoi stali 35 v smesi zheleznykh gra nul s CrMoWCBSi poroshkom [Production amorphous coatings by electrospark treatment of steel 1035 in a mixture of iron granules with CrMoWCBSi powder]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 4, pp. 19–30. DOI: 10.17212/1994-6309-2019-21.4-19-30. 15. Burkov A.A., Kulik M.A. Elektroiskrovoe osazhdenie pokrytii s ispol’zovaniem poroshka Cr3C2 i ikh kharakteristika [Electrospark deposition of coatings using Cr3C2 powder and their characterization]. Pis’ma o materialakh = Letters on Materials, 2019, vol. 9, no. 2, pp. 243–248. DOI: 10.22226/2410-3535-2019-2-243-248. (In Russian). 16. Burkov A.A., Kulik M.A. Korrozionnaya i tribotekhnicheskaya kharakteristika metallomatrichnykh Fe-TiCr-B pokrytii [Corrosion and tribotechnical characteristics of metal matrix Fe-Ti-Cr-B coatings]. Svarochnoe proizvodstvo, 2021, no. 12, pp. 43–49. (In Russian). 17. Hokamoto K., Lee J.S., Fujita M., Itoh S., Raghukandan K. The synthesis of bulk material through explosive compaction for making intermetallic compound Ti5Si3 and its composites. Journal of Materials Science, 2002, vol. 37, no. 19, pp. 4073–4078. DOI: 10.1023/A:1020071416063.

RkJQdWJsaXNoZXIy MTk0ODM1