Obrabotka Metallov 2022 Vol. 24 No. 4

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 164 MATERIAL SCIENCE 2. Alghamdi F., Song X., Hadadzadeh A., Shalchi-Amirkhiz B., Mohammadi M., Haghshenas M. Post heat treatment of additive manufactured AlSi10Mg: on silicon morphology, texture and small-scale properties. Materials Science and Engineering A, 2020, vol. 783, p. 139296. 3. Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. International Journal of Fatigue, 2017, vol. 98, pp. 14–31. 4. KhimichM.A., ProsolovK.A.,MishurovaT., EvsevleevS.,MonforteX.,TeuschlA.H., SlezakP., IbragimovE.A., Saprykin A.A., Kovalevskaya Z.G., Dmitriev A.I., Bruno G., Sharkeev Y.P. Advances in laser additive manufacturing of Ti-Nb alloys: from nanostructured powders to bulk objects. Nanomaterials, 2021, vol. 11 (5), p. 1159. 5. Debroy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science, 2018, vol. 92, pp. 112–224. 6. Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting. Progress in Materials Science, 2019, vol. 106, p. 100578. 7. Uzan N.E., Shneck R., Yeheskel O., Frage N. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Materials Science and Engineering A, 2017, vol. 704, pp. 229–237. 8. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 2014, vol. 1–4, pp. 77–86. 9. Ma K., Wen H., Hu T., Topping T.D., Isheim D., Seidman D.N., Lavernia E.J., Schoenung J.M. Mechanical behavior and strengthening mechanisms in ultrafi ne grain precipitation-strengthened aluminum alloy. Acta Materialia, 2014, vol. 62, pp. 141–155. 10. King W.E., Anderson A.T., Ferencz R.M., Hodge N.E., Kamath C., Khairallah S.A. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2015, vol. 2 (4), p. 41304. DOI: 10.1063/1.4937809. 11. Saprykina N.A., Saprykin A.A., Arkhipova D.A. Infl uence of shielding gas and mechanical activation of metal powders on the quality of surface sintered layers. IOP Conference Series: Materials Science and Engineering, 2016, vol. 125 (1), p. 012016. 12. Awd M., Tenkamp J., Hirtler M., Siddique S., Bambach M., Walther F. Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials, 2017, vol. 11, pp. 1–17. 13. Buchbinder D., Schleifenbaum H., Heidrich S., Meiners W., Bültmann J. High power selective laser melting (HPSLM) of aluminum parts. Physics Procedia, 2011, vol. 12, pp. 271–278. 14. Griffi ths S., Rossell M.D., Croteau J., Vo N.Q., Dunand D.C., Leinenbach C. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy. Materials Characterization, 2018, vol. 143, pp. 34–42. 15. Lu Z., Zhang L.J. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Materials and Design, 2017, vol. 116, pp. 427–437. 16. Zhang D. Processing of advanced materials using high-energy mechanical milling. Progress in Materials Science, 2004, vol. 49, pp. 537–560. 17. Gu D., Wang H., Zhang G. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder metall. Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 464–476. 18. Sharkeev Y.P., Dmitriev A.I., Knyazeva A.G., Eroshenko A.Yu., Saprykin A.A., Khimich M.A., Ibragimov E.A., Glukhov I.A., Mairambekova A.M., Nikonov A.Y. Selective laser melting of the Ti–(40–50) wt.% Nb alloy. High Temperature Material Processes, 2017, vol. 21 (2), pp. 161–183. 19. Saprykin А.А., Sharkeev Y.P., Saprykina N.А., Ibragimov E.A. Selective laser melting of magnesium. Key Engineering Materials, 2020, vol. 839, pp. 144–149. 20. Gu D.D., Meiners W., Wissenbach K., Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 2012, vol. 57, pp. 133–164. DOI: 10.1179/1 743280411Y.0000000014. Confl icts of Interest The authors declare no confl ict of interest.  2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

RkJQdWJsaXNoZXIy MTk0ODM1