Obrabotka Metallov 2022 Vol. 24 No. 4

OBRABOTKAMETALLOV Vol. 24 No. 4 2022 241 MATERIAL SCIENCE 21. Moffat A.J., Wright P., Helfen L., Baumbach T., Johnson G., Spearing S.M., Sinclair I. In situ synchrotron computed laminography of damage in carbon fi bre–epoxy [90/0]s laminates. Scripta Materialia, 2010, vol. 62, pp. 97–100. DOI: 10.1016/j.scriptamat.2009.09.027. 22. Castro J., Sket F., Helfen L., Gonzalez C. In situ local imaging and analysis of impregnation during liquid moulding of composite materials using synchrotron radiation computed laminography. Composites Science and Technology, 2021, vol. 215. DOI: 10.1016/j.compscitech.2021.108999. 23. Ueda T., Helfen L., Morgeneyer T.F. In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson–Tvergaard–Needleman-type simulations. Acta Materialia, 2014, vol. 78, pp. 254–270. DOI: 10.1016/j.actamat.2014.06.029. 24. Morgeneyer T.F., Taillandier-Thomas T., Helfen L., Baumbach T., Sinclair I., Roux S., Hild F. In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet. Acta Materialia, 2014, vol. 69, pp. 78–91. DOI: 10.1016/j.actamat.2014.01.033. 25. Morgeneyer T.F., Helfen L., Sinclair I., Proudhon H., Xu F., Baumbach T. Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography. Scripta Materialia, 2011, vol. 65, pp. 1010–1013. DOI: 10.1016/j.scriptamat.2011.09.005. 26. Shen Y., Morgeneyer T.F., Garnier J., Allais L., Helfen L., Crépin J. Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and fi niteelement simulations. Acta Materialia, 2013, vol. 61, pp. 2571–2582. DOI: 10.1016/j.actamat.2013.01.035. 27. Morgeneyer T.F., Helfen L., Mubarak H., Hild F. 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Experimental Mechanics, 2012, vol. 53, pp. 543–556. DOI: 10.1007/s11340-012-9660-y. 28. Weitkamp T., Tafforeau P., Boller E., Cloetens P., Valade J.-P., Bernard P., Peyrin F., Ludwig W., Helfen L., Baruchel J. Parallel-beam imaging at the ESRF beamline ID19: current status and plans for the future. AIP Conference Proceedings, 2010, vol. 1234. DOI: 10.1063/1.3463345. 29. Tancogne-Dejeana T., Roth C.C., Morgeneyer T.F., Helfen L., Mohr D. Ductile damage of AA2024-T3 under shear loading: mechanism analysis through in-situ laminography. Acta Materialia, 2021, vol. 205, p. 116556. DOI: 10.1016/j.actamat.2020.116556. 30. Roth C.C., Mohr D. Ductile fracture experiments with locally proportional loading histories. International Journal of Plasticity, 2015, vol. 79, pp. 328–354. DOI: 10.1016/j.ijplas.2015.08.004. 31. Helfen L., Myagotin A., Rack A., Pernot P., Mikulík P., Di Michiel M., Baumbach T. Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of fl at devices. Physica Status Solidi (A), 2007, vol. 204, pp. 2760–2765. DOI: 10.1002/pssa.200775676. 32. Myagotin A., Voropaev A., Helfen L., Hänschke D., Baumbach T. Effi cient volume reconstruction for parallel-beam computed laminography by fi ltered backprojection on multi-core clusters. IEEE Transactions on Image Processing, 2013, vol. 32, pp. 5348–5361. DOI: 10.1109/TIP.2013.2285600. 33. Ando I., Mugita Y., Hirayama K., Munetoh S., Aramaki M., Jiang F., Tsuji T., Takeuchi A., Uesugi M., Ozaki Y. Elucidation of pore connection mechanism during ductile fracture of sintered pure iron by applying persistent homology to 4D images of pores: role of open pore. Materials Science and Engineering A, 2021, vol. 828, p. 142112. DOI: 10.1016/j.msea.2021.142112. 34. Hoshino M., Uesugi K., Takeuchi A., Suzuki Y., Yagi N. Development of an x-ray micro-laminography system at Spring-8. AIP Conference Proceedings, 2011, vol. 1365, pp. 250–253. DOI: 10.1063/1.3625351. 35. Obayashi I. Volume-optimal cycle: tightest representative cycle of a generator in persistent homology. SIAM Journal on Applied Algebra and Geometry, 2018, vol. 2, pp. 508–534. DOI: 10.1137/17M1159439. 36. Kondori B., Morgeneyer T.F., Helfen L., Benzerga A.A. Void growth and coalescence in a magnesium alloy studied by synchrotron radiation laminography. Acta Materialia, 2018, vol. 155, pp. 80–94. DOI: 10.1016/j.actamat.2018.05.026. 37. Kondori B., Benzerga A.A. Effect of stress triaxiality on the fl ow and fracture of Mg alloy AZ31. Metallurgical and Materials Transactions A, 2014, vol. 45, pp. 3292–3307. DOI: 10.1007/s11661-014-2211-7. 38. Sano Y., Masaki K., Akita K., Kajiwara K., Sano T. Effect of laser peening on the mechanical properties of aluminum alloys probed by synchrotron radiation and x-ray free electron laser. Metals, 2020, vol. 10, p. 1490. DOI: 10.3390/met10111490. 39. Nakai Y., Shiozawaa D., Kikuchia S., Obamaa T., Saitoa H., Makinob T., Neishi Y. Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation. Procedia Structural Integrity, 2016, vol. 2, pp. 3117–3124. DOI: 10.1016/j.prostr.2016.06.389.

RkJQdWJsaXNoZXIy MTk0ODM1