OBRABOTKAMETALLOV Vol. 24 No. 4 2022 242 MATERIAL SCIENCE 40. Shiozawa D., Makino T., Neishi Y., Nakai Y. Observation of rolling contact fatigue cracks by laminography using ultra-bright synchrotron radiation. Procedia Materials Science, 2014, vol. 3, pp. 159–164. DOI: 10.1016/j. mspro.2014.06.030. 41. Nakai Y., Shiozawa D., Kikuchi S., Obama T., Saito H., Makino T., Neishi Y. 4D observations of rolling contact fatigue processes by laminography using ultra-bright synchrotron radiation. Engineering Fracture Mechanics, 2017, vol. 183, pp. 180–189. DOI: 10.1016/j.engfracmech.2017.03.021. 42. Solano-Alvarez W., Peet M.J., Pickering E.J., Jaiswal J., Bevan A., Bhadeshia H.K.D.H. Synchrotron and neural network analysis of the infl uence of composition and heat treatment on the rolling contact fatigue of hypereutectoid pearlitic steels. Materials Science and Engineering: A, 2017, vol. 707, pp. 259–269. DOI: 10.1016/j. msea.2017.09.045. 43. Zhang S.Y., Spiryagin M., Ding H.H., Wu Q., Guo J., Liu Q.Y., Wang W.J. Rail rolling contact fatigue formation and evolution with surface defects. International Journal of Fatigue, 2022, vol. 158, p. 106762. DOI: 10.1016/j. ijfatigue.2022.106762. Confl icts of Interest The authors declare no confl ict of interest. 2022 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
RkJQdWJsaXNoZXIy MTk0ODM1