OBRABOTKAMETALLOV Vol. 25 No. 2 2023 116 MATERIAL SCIENCE 23. Patra B., Jana S., Constantin L.A., Samal P. Relevance of the Pauli kinetic energy density for semilocal functionals. Physical Review B, 2019, vol. 100, p. 155140. DOI: 10.1103/PhysRevB.100.155140. 24. Jana S., Behera S.K., Smiga S., Constantin L.A., Samal P. Improving the applicability of the Pauli kinetic energy density based semilocal functional for solids. New Journal of Physics, 2021, vol. 23, p. 063007. DOI: 10.1088/13672630/abfd4d. 25. Marzari N., Vanderbilt D., De VitaA., Payne M.C. Thermal contraction and disordering of theAl(110) surface. Physical Review Letters, 1999, vol. 82, iss. 16, pp. 3296–3299. DOI: 10.1103/PhysRevLett.82.3296. 26. Emery A.A., Wolverton C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Scientifi c Data, 2017, vol. 4, p. 170153. DOI: 10.1038/ sdata.2017.153. 27. Hayashiuchi Y., Hagihara T., Okada T. A new interpretation of proportionality between vacancy formation energy and melting point. Physica B+C, 1982, vol. 115, iss. 1, pp. 67–71. DOI: 10.1016/0378-4363(82)90056-0. 28. Franklin A.D. Statistical thermodynamics of point defects in crystals. Point Defects in Solids. Boston, MA, Springer, 1972, p. 1–101. DOI: 10.1007/978-1-4684-2970-1_1. 29. Doyama M., Koehler J.S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquidmetals. ActaMetallurgica, 1976, vol. 24, iss. 9, pp. 871–879. DOI: 10.1016/00016160(76)90055-9. 30. Mattsson T.R., Mattsson A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Physical Review B, 2002, vol. 66, p. 214110. DOI: 10.1103/PhysRevB.66.214110. Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1