Obrabotka Metallov 2023 Vol. 25 No. 2

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 30 TECHNOLOGY 2. Saito Y., Utsunomiya H., Tsuji N., Sakai T. Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process. Acta Materialia, 1999, vol. 47, iss. 2, pp. 579–583. DOI: 10.1016/ S1359-6454(98)00365-6. 3. Zherebtsov S.V., Salishchev G.A., Galeyeva R.M., Valiakhmetova O.R., Mironova S.Yu., Semiatin S.L. Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing. Scripta Materialia, 2004, vol. 51, pp. 1147–1151. DOI: 10.1016/j.scriptamat.2004.08.018. 4. Richert M., Stuwe H.P., Zehetbauer M.J., Richert J., Pippan R., Motz Ch., Schafl er E. Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression. Materials Science and Engineering: A., 2003, vol. 355, iss. 1–2, pp. 180–185. DOI: 10.1016/S0921-5093(03)00046-7. 5. Mani B., Jahedi M., Paydar M.H. Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature. Powder Technology, 2012, vol. 219, pp. 1–8. DOI: 10.1016/j. powtec.2011.11.034. 6. Valiev R.Z., Estrin Yu., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. Producing bulk ultrafi ne-grained materials by severe plastic deformation. JOM, 2006, vol. 58, pp. 33–39. DOI: 10.1007/s11837-006-0213-7. 7. Segal V. Review: modes and processes of severe plastic deformation (SPD). Materials, 2018, vol. 11 (7), p. 1175. DOI: 10.3390/ma11071175. 8. William G., Voorkes J. Conform and Linex – continuous aluminium extrusion machines. Light Metal Age, 1978, vol. 36, iss. 1–2, pp. 18–20. 9. Thomas B.M., Derguti F., Jackson M. Continuous extrusion of a commercially pure titanium powder via the Conform process. Materials Science and Technology, 2017, vol. 33, iss. 7, pp. 899–903. DOI: 10.1080/02670836.2 016.1245256. 10. Segal V.M. Mechanics of continuous equal-channel angular extrusion. Journal of Materials Processing Technology, 2010, vol. 210, pp. 542–549. DOI: 10.1016/j.jmatprotec.2009.11.001. 11. Lapovok R., Tomus D., Bettles C. Shear deformation with imposed hydrostatic pressure for enhanced compaction of powder. Scripta Materialia, 2008, vol. 58, iss. 10, pp. 898–901. DOI: 10.1016/j.scriptamat.2008.01.010. 12. Qi Y., Contreras K.G., Jung H.D., Kim H.E., Lapovok R., Estrin Y. Ultrafi ne-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation. Materials Science and Engineering: C, 2016, vol. 59, pp. 754–765. DOI: 10.1016/j.msec.2015.10.070. 13. Matsuki K., Aida T., Takeuchi T., Kusui J., Yokoe K. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing. Acta Materialia, 2000, vol. 48, iss. 10, pp. 2625–2632. DOI: 10.1016/S1359-6454(00)00061-6. 14. Xia K., Wu X. Back pressure equal channel angular consolidation of pure Al particles. Scripta Materialia, 2005, vol. 53, iss. 11, pp. 1225–1229. DOI: 10.1016/j.scriptamat.2005.08.012. 15. Chen W., Yamamoto Y., Peter W.H., Gorti S.B., Sabau A.S., Clark M.B., Nunn S.D., Kiggans J.O., Blue C.A., Williams J.C., Fuller B., Akhtar K. Cold compaction study of Armstrong Process® Ti–6Al–4V powders. Powder Technology, 2011, vol. 212, iss. 2, pp. 194–199. DOI: 10.1016/j.powtec.2011.08.007. 16. Crowley G. How to extract low-cost titanium. Advanced Materials and Processes, 2003, vol. 161, iss. 11, pp. 25–27. 17. Chen G.Z., Fray D.J., Farthing T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, vol. 407, pp. 361–364. DOI: 10.1038/35030069. 18. Donaldson A., Cordes R.A. Rapid plasma quenching for the production of ultrafi ne metal and ceramic powders. JOM, 2005, vol. 57, iss. 4, pp. 58–63. DOI: 10.1007/s11837-005-0083-4. 19. Ratnikov V.I., Prokudina V.K., Belikova A.F., Sachkova N.V. Obtaining of titanium powder from titanium sponge by self-propagating high-temperature synthesis hydration and dehydration. Russian Journal of Non-Ferrous Metals, 2010, vol. 51, iss. 4, pp. 352–358. DOI: 10.3103/S1067821210040176. 20. Bukhvalov A.B., Gorshkov M.M., Litvinov B.V. Eff ect of hydrogenation and hot-cold rolling of compact from titanium sponge on its structure, strain hardening, and fracture behavior. Metal Science and Heat Treatment, 2004, vol. 46, iss. 11–12, pp. 527–534. DOI: 10.1007/s11041-005-0013-7. 21. Rubshtein A.P., Trakhtenberg I.Sh., Makarova E.B., Triphonova E.B., Bliznets D.G., Yakovenkova L.I., Vladimirov A.B. Porous material based on spongy titanium granules: structure, mechanical properties, and osseointegration. Materials Science and Engineering: C, 2014, vol. 35, pp. 363–369. DOI: 10.1016/j.msec.2013.11.020. 22. Hadadzadeh A., Whitney M.A., Wells M.A., Corbin S.F. Analysis of compressibility behavior and development of a plastic yield model for uniaxial die compaction of sponge titanium powder. Journal of Materials Processing Technology, 2017, vol. 243, pp. 92–99. DOI: 10.1016/j.jmatprotec.2016.12.004.

RkJQdWJsaXNoZXIy MTk0ODM1