OBRABOTKAMETALLOV Vol. 25 No. 2 2023 63 EQUIPMENT. INSTRUMENTS References 1. Hügel H., Wiedmaier M., Rudlaff T. Laser processing integrated into machine tools – design, applications, economy. Optical and Quantum Electronics, 1995, vol. 27, iss. 12, pp. 1149–1164. DOI: 10.1007/BF00326472. 2. You K., Yan G., Luo X., Gilchrist M.D., Fang F. Advances in laser assisted machining of hard and brittle materials. Journal of Manufacturing Processes, 2020, vol. 58, pp. 677–692. DOI: 10.1016/j.jmapro.2020.08.034. 3. Anderson M.C., Shin Y.C. Laser-assisted machining of an austenitic stainless steel: P550. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, vol. 220, iss. 12, pp. 2055– 2067. DOI: 10.1243/09544054JEM562. 4. Sun S., Brandt M., Dargusch M.S. Thermally enhanced machining of hard-to-machine materials – A review. International Journal of Machine Tools and Manufacture, 2010, vol. 50, iss. 8, pp. 663–680. DOI: 10.1016/j. ijmachtools.2010.04.008. 5. Makarov V.M., Lukina S.V. Unikal’naya sinergiya gibridnykh stankov [Unique synergy of hybrid machines]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2016, no. 8, pp. 18–25. 6. Widłaszewski J., Nowak M., Nowak Z., Kurp P. Curvature change in laser-assisted bending of Inconel 718. Physical Sciences Forum, 2022, vol. 4, iss. 1, p. 26. DOI: 10.3390/psf2022004026. 7. SkeebaV.Yu.Gibridnoetekhnologicheskoeoborudovanie:povyshenieeff ektivnostirannikhstadiiproektirovaniya kompleksirovannykh metalloobrabatyvayushchikh stankov [Hybrid process equipment: improving the effi ciency of the integrated metalworking machines initial designing]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 2, pp. 62–83. DOI: 10.17212/1994-63092019-21.2-62-83. 8. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnoprofi l’nykh izdelii [Hybrid technology of electrochemical processing of complex profi les]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34. 9. Sun S., Harris J., Brandt M. Parametric investigation of laser-assisted machining of commercially pure titanium. Advances Engineering Materials, 2008, vol. 10, iss. 6, pp. 565–572. DOI: 10.1002/adem.200700349. 10. Madhavulu G., Ahmed B. Hot machining process for improved metal removal rates in turning operations. Journal of Materials Processing Technology, 1994, vol. 44, pp. 199–206. DOI: 10.1016/0924-0136(94)90432-4. 11. Parida A.K., Maity K. Experimental investigation on tool life and chip morphology in hot machining of Monel-400. Engineering Science and Technology, an International Journal, 2018, vol. 21, iss. 3, pp. 371–379. DOI: 10.1016/j.jestch.2018.04.003. 12. Özler L., İnan A., Özel C. Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. International Journal of Machine Tools and Manufacture, 2001, vol. 41, iss. 2, pp. 163– 172. DOI: 10.1016/S0890-6955(00)00077-8. 13. Ul Hasan S., Ali S., Jaff ery S.H.I., Ud Din E., Mubashir A., Khan M. Study of burr width and height using ANOVA in laser hybrid micro milling of titanium alloy (Ti6Al4V). Journal of Materials Research and Technology, 2022, vol. 21, pp. 4398–4408. DOI: 10.1016/j.jmrt.2022.11.051. 14. Ding H., Shen N., Shin Y.C. Thermal and mechanical modeling analysis of laser-assisted micro-milling of diffi cult-to-machine alloys. Journal of Materials Processing Technology, 2012, vol. 212, iss. 3, pp. 601–613. DOI: 10.1016/j.jmatprotec.2011.07.016. 15. Bermingham M.J., Kent D., Dargusch M.S. A new understanding of the wear processes during laser assisted milling 17-4 precipitation hardened stainless steel. Wear, 2015, vol. 328–329, pp. 518–530. DOI: 10.1016/j. wear.2015.03.025. 16. Mohammadi H., Patten J.A. Laser augmented diamond drilling: a new technique to drill hard and brittle materials. Procedia Manufacturing, 2016, vol. 5, pp. 1337–1347. DOI: 10.1016/j.promfg.2016.08.104. 17. Skeeba V.Yu., Ivancivsky V.V. Povyshenie eff ektivnosti poverkhnostno-termicheskogo uprochneniya detalei mashin v usloviyakh sovmeshcheniya obrabatyvayushchikh tekhnologii, integriruemykh na edinoi stanochnoi baze [Improving the effi ciency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 45–71. DOI: 10.17212/19946309202 123.34571.
RkJQdWJsaXNoZXIy MTk0ODM1