Obrabotka Metallov 2023 Vol. 25 No. 2

OBRABOTKAMETALLOV Vol. 25 No. 2 2023 91 MATERIAL SCIENCE 2. Wu Y., Hong S., Zhang J., He Z., Guo W., Wang Q., Li G. Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. International Journal of Refractory Metals and Hard Materials, 2012, vol. 32, pp. 21–26. DOI: 10.1016/j.ijrmhm.2012.01.002. 3. VenterA.M., LuzinV.,MaraisaD., Sacks N., Ogunmuyiwa E.N., Shipway P.H. Interdependence of slurry erosion wear performance and residual stress in WC-12wt%Co and WC-10wt%VC-12wt%Co HVOF coatings. International Journal Refractory Metals and Hard Materials, 2020, vol. 87, p. 105101. DOI: 10.1016/j.ijrmhm.2019.105101. 4. Wu X., Guo Z.M., Wang H.B., Song X.Y. Mechanical properties of WC-Co coatings with diff erent decarburization levels. Rare Metals, 2014, vol. 33, iss. 3, pp. 313–317. DOI: 10.1007/s12598-014-0257-8. 5. Sanchez E., Bannier E., Salvador M.D., Bonache V., Garcıa J.C., Morgiel J., Grzonka J. Microstructure and wear behavior of conventional and nanostructured plasma-sprayed WC-Co coatings. Journal of Thermal Spray Technology, 2010, vol. 19, iss. 5, pp. 964–974. DOI: 10.1007/s11666-010-9480-5. 6. Liu S.L., Zheng X.P., Geng G.Q. Infl uence of nano-WC-12Co powder addition in WC–10Co–4Cr ACHVAF sprayed coatings on wear and erosion behavior. Wear, 2010, vol. 269, iss. 5–6, pp. 362–367. DOI: 10.1016/j. wear.2010.04.019. 7. Wang H., Qiu Q., Gee M., Hou C., Liu X., Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densifi cation of starting powder. Materials and Design, 2020, vol. 191, p. 108586. DOI: 10.1016/j. matdes.2020.108586. 8. Selvadurai U., Hollingsworth P., Baumann I., Hussong B., Tillmann W., Rausch S., Biermann D. Infl uence of the handling parameters on residual stresses of HVOF-sprayedWC-12Co coatings. Surface and Coatings Technology, 2015, vol. 268, pp. 30–35. DOI: 10.1016/j.surfcoat.2014.11.055. 9. Ghadami F., Sohi M.H., Ghadami S. Eff ect of bond coat and post-heat treatment on the adhesion of air plasma sprayed WC-Co coatings. Surface and Coatings Technology, 2015, vol. 261, pp. 289–294. DOI: 10.1016/j. surfcoat.2014.11.016. 10. Yin B., Zhou H.D., Yi D.L. Microsliding wear behavior of HVOF sprayed conventional and nanostructured WC-12Co coatings at elevated temperatures. Surface Engineering, 2010, vol. 26, iss. 6, pp. 469–477. DOI: 10.117 9/026708410X12506870724352. 11. Rodriguez M.A., Gil L., Camero S., Freґty N., Santana Y., Caro J. Eff ects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings. Surface and Coatings Technology, 2014, vol. 258, pp. 38–48. DOI: 10.1016/j.surfcoat.2014.10.014. 12. Guo C., Chen J., Zhou J., Zhao J., Wang L., Yu Y., Zhou H. Eff ects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating. Surface and Coatings Technology, 2012, vol. 206, pp. 2064–2071. DOI: 10.1016/j.surfcoat.2011.06.005. 13. Zhang J., Lei J., Gu Z., Tantai F., Tian H., Han J., Fang Y. Eff ect of WC-12Co content on wear and electrochemical corrosion properties of Ni-Cu/WC-12Co composite coatings deposited by laser cladding. Surface and Coatings Technology, 2020, vol. 393, p. 125807. DOI: 10.1016/j.surfcoat.2020.125807. 14. Jalali Azizpour M., Tolouei-Rad M. The eff ect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings. Ceramics International, 2019, vol. 45, iss. 11, pp. 13934–13941. DOI: 10.1016/j.ceramint.2019.04.091. 15. Sahraoui T., Guessasma S., Ali Jeridane M., Hadji M. HVOF sprayed WC-Co coatings: microstructure, mechanical properties and friction moment prediction. Materials and Design, 2010, vol. 31, iss. 3, pp. 1431–1437. DOI: 10.1016/j.matdes.2009.08.037. 16. He J., Schoenung J.M. A review on nanostructured WC-Co coatings. Surface and Coatings Technology, 2002, vol. 157, iss. 1, pp. 72–79. DOI: 10.1016/S0257-8972(02)00141-X. 17. Gao P.H., Chen B.Y., Wang W., Jia H., Li J.P., Yang Z., Guo Y.C. Simultaneous increase of friction coeffi cient and wear resistance through hvof sprayed WC-(nano WC-Co). Surface and Coatings Technology, 2019, vol. 363, pp. 379–389. DOI: 10.1016/j.surfcoat.2019.02.042. 18. Ghosh G., Sidpara A., Bandyopadhyay P.P. Understanding the role of surface roughness on the tribological performance and corrosion resistance ofWC-Co coating. Surface and Coatings Technology, 2019, vol. 378, p. 125080. DOI: 10.1016/j.surfcoat.2019.125080. 19. Dent A.H., Palo S., Sampath S. Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co cermets with diff erent binder phase contents. Journal of Thermal Spray Technology, 2002, vol. 11 (4), pp. 551–558. DOI: 10.1361/105996302770348691.

RkJQdWJsaXNoZXIy MTk0ODM1