Obrabotka Metallov 2023 Vol. 25 No. 3

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 102 MATERIAL SCIENCE References 1. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, vol. 6, iss. 5, pp. 299–303. DOI: 10.1002/adem.200300567. 2. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 213–218. DOI: 10.1016/j.msea.2003.10.257. 3. Tsai M.H., Yeh J.W. High-entropy alloys: a critical review. Materials Research Letters, 2014, vol. 2, iss. 3, pp. 107–123. DOI: 10.1080/21663831.2014.912690. 4. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, iss. 8, pp. 515– 534. DOI: 10.1038/s41578-019-0121-4. 5. Steurer W. Single-phase high-entropy alloys – A critical update. Materials Characterization, 2020, vol. 162, pp. 1–17. DOI: 10.1016/j.matchar.2020.110179. 6. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. Microstructures and properties of highentropy alloys. Progress in Materials Science, 2014, vol. 61, pp. 1–93. DOI: 10.1016/j.pmatsci.2013.10.001. 7. Duchaniya R.K., Pandel U., Rao P. Coatings based on high entropy alloys: An overview. Materials Today: Proceedings, 2021, vol. 44, pp. 4467–4473. DOI: 10.1016/j.matpr.2020.10.720. 8. Li W., Liu P., Liaw P.K. Microstructures and properties of high-entropy alloy fi lms and coatings: a review. Materials Research Letters, 2018, vol. 6, iss. 4, pp. 199–229. DOI: 10.1080/21663831.2018.1434248. 9. Jiang P.F., Zhang C.H., Zhang S., Zhang J.B., Chen J., Liu Y. Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying. Materials Chemistry and Physics, 2020, vol. 255, pp. 1–10. DOI: 10.1016/j.matchemphys.2020.123571. 10. Guo Y., Li C., Zeng M., Wang J., Deng P., Wang Y. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Materials Chemistry and Physics, 2020, vol. 242, pp.1– 9. DOI: 10.1016/j.matchemphys.2019.122522. 11. Gu Z., Xi S., Sun C. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings. Journal of Alloys and Compounds, 2020, vol. 819, pp. 1–10. DOI: 10.1016/j.jallcom.2019.152986. 12. Cheng J.B., Liang X.B., Wang Z.H., Xu B.S. Formation and mechanical properties of CoNiCuFeCr high-entropy alloys coatings prepared by plasma transferred arc cladding process. Plasma Chemistry and Plasma Processing, 2013, vol. 33, iss. 5, pp. 979–992. DOI: 10.1007/s11090-013-9469-1. 13. Hsu W.L., Murakami H., Yeh J.W., Yeh A.C., Shimoda K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surface and Coatings Technology, 2017, vol. 316, pp. 71–74. DOI: 10.1016/j.surfcoat.2017.02.073. 14. Fadeev S.N., Golkovski M.G., Korchagin A.I., Kuksanov N.K., Lavruhin A.V., Petrov S.E., Salimov R.A., Vaisman A.F. Technological applications of BINP industrial electron accelerators with focused beam extracted into atmosphere. Radiation Physics and Chemistry, 2000, vol. 57, iss. 3–6, pp. 653–655. DOI: 10.1016/s0969806x(99)00499-5. 15. Uvarov N.F., Bushueva E., Turlo Y., Khamgushkeeva G. Infl uence of chromium concentration on corrosion resistance of surface layers of stainless steel. MATEC Web of Conferences, 2021, vol. 340, pp. 1–5. DOI: 10.1051/ matecconf/202134001022. 16. Bushueva E.G., Grinberg B.E., Bataev V.A., Drobyaz E.A. Raising the resistance of chromium-nickel steel to hydroabrasive wear by non-vacuum electron-beam cladding with boron. Metal Science and Heat Treatment, 2019, vol. 60, iss. 9–10, pp. 641–644. DOI: 10.1007/s11041-019-00331-3. 17. Lenivtseva O.G., Bataev I.A., Golkovskii M.G., Bataev A.A., Samoilenko V.V., Plotnikova N.V. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon. Applied Surface Science, 2015, vol. 355, pp. 320–326. DOI: 10.1016/j.apsusc.2015.07.043. 18. Bataev I.A., Bataev A.A., Golkovski M.G., Krivizhenko D.S., Losinskaya A.A., Lenivtseva O.G. Structure of surface layers produced by non-vacuum electron beam boriding. Applied Surface Science, 2013, vol. 284, pp. 472–481. DOI: 10.1016/j.apsusc.2013.07.121. 19. Bataev I.A., Golkovskii M.G., Losinskaya A.A., Bataev A.A., Popelyukh A.I., Hassel T., Golovin D.D. Nonvacuum electron-beam carburizing and surface hardening of mild steel. Applied Surface Science, 2014, vol. 322, pp. 6–14. DOI: 10.1016/j.apsusc.2014.09.137. 20. Lazurenko D.V., Alferova G.I., Golkovsky M.G., Emurlaev K.I., Emurlaeva Y.Y., Bataev I.A., Ogneva T.S., Ruktuev A.A., Stepanova N.V., Bataev A.A. Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures. Surface and Coatings Technology, 2020, vol. 395, p. 1–14. DOI: 10.1016/j.surfcoat.2020.125927.

RkJQdWJsaXNoZXIy MTk0ODM1