Obrabotka Metallov 2023 Vol. 25 No. 3

OBRABOTKAMETALLOV Vol. 25 No. 3 2023 48 TECHNOLOGY The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Denis Salikhyanov 1, 2, a, *, Nikolay Michurov 2, 3, b 1 Institute of New Materials and Technologies, Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, 19 Mira Str., Ekaterinburg, 620002, Russian Federation 2 Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya Str., Ekaterinburg, 620049, Russian Federation 3 Ural Institute of State Fire Service of EMERCOM of Russia, 22 Mira Str., Ekaterinburg, 620062, Russian Federation a https://orcid.org/0000-0001-7235-7111, d.r.salikhianov@urfu.ru, b https://orcid.org/0000-0003-1775-6181, n.michurov@ya.ru Obrabotka metallov - Metal Working and Material Science Journal homepage: http://journals.nstu.ru/obrabotka_metallov Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science. 2023 vol. 25 no. 3 pp. 36–49 ISSN: 1994-6309 (print) / 2541-819X (online) DOI: 10.17212/1994-6309-2023-25.3-36-49 ART I CLE I NFO Article history: Received: 16 June 2023 Revised: 28 June 2023 Accepted: 06 July 2023 Available online: 15 September 2023 Keywords: Laminated composites Aluminum alloys Joint deformation Stress-strain state Materials bonding Finite element simulation Funding This study was performed in the frame of the grant № 22-29-20243 “Multiscale simulation of processes of joining dissimilar materials by plastic deformation” funded by the Russian Science Foundation with the support of the government of Sverdlovsk region. Acknowledgements Research was partially conducted at core facility “Structure, mechanical and physical properties of materials”. ABSTRACT Introduction. Bond strength between dissimilar materials is the most important characteristic of laminated composites, which determines the success of its development for industrial use. In order to develop the theory of joining materials by plastic deformation, it is proposed to perform computer simulation of joint deformation of representative volumes of dissimilar materials on a microscale and compare the parameters of the stress-strain state with the previously presented theoretical mechanism. The aimof this work is to analyze the stress-strain state of dissimilar materials under plastic deformation on a microscale and to establish the location of the onset of fracture of surface oxide fi lms. To achieve this aim, the following tasks of the work are formulated: 1) to study the surface profi les of dissimilar materials to be bonded by plastic deformation; 2) to simulate by the fi nite element method (FE) the plastic deformation of contact surfaces of dissimilar materials on a microscale; 3) to study the stages of joint deformation of dissimilar materials on a microscale and verify of the theoretical mechanism. Research methodology. The study of three-dimensional topography and roughness was carried out on a Veeco Wyko NT1100 Optical Profi ling System. Deform-3D FE simulation package was chosen as the main research tool. Aluminum alloys AMg3 and D16 were chosen as the materials under study. Results and discussion. In this work, computer FE simulating of the joint deformation of the surface layers of AMg3 and D16 alloys on a microscale was performed, an analysis of the surface profi les of materials after various types of processing was carried out, the parameters of the stress-strain state were studied and compared with the parameters of the theoretical mechanism. Based on the results of the comparison, the adequacy of the proposed theoretical mechanism was assessed, and the practical diffi culties of theoretical simulation of the joint deformation of dissimilar materials on the microscale were noted. Microscale FE simulation made it possible to study the fl ow of plastic deformation in the near-surface layers of materials, as well as to identify areas of the most probable fracture of surface oxide fi lms and, consequently, areas of primary bonding of dissimilar materials. For citation: Salikhyanov D.R., Michurov N.S. The concept of microsimulation of processes of joining dissimilar materials by plastic deformation. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2023, vol. 25, no. 3, pp. 36–49. DOI: 10.17212/1994-6309-2023-25.3-36-49. (In Russian). ______ * Corresponding author Salikhyanov Denis R., Ph.D. (Engineering), Associate Professor Ural Federal University named after the fi rst President of Russia B.N. Yeltsin, 28 Mira Str., Ekaterinburg, 620002, Russian Federation Tel.: +7 (343) 375-44-37, e-mail: d.r.salikhianov@urfu.ru

RkJQdWJsaXNoZXIy MTk0ODM1