ОБРАБОТКА МЕТАЛЛОВ Том 25 № 4 2023 212 МАТЕРИАЛОВЕДЕНИЕ steel powder // Powder Technology. – 2021. – Vol. 382. – P. 199–207. – DOI: 10.1016/j.powtec.2020.12.072. 10. Life time of new SYSZ thermal barrier coatings produced by plasma sprayingmethod under thermal shock test and high temperature treatment / M.R. LoghmanEstarki, R. Shoja Razavi, H. Edris, M. Pourbafrany, H. Jamali, R. Ghasemi // Ceramics International. – 2014. – Vol. 40. – P. 1405–1414. – DOI: 10.1016/j. ceramint.2013.07.023. 11. Thermal shock resistance and thermal insulation capability of laser-glazed functionally graded lanthanum magnesium hexaluminate/yttria-stabilised zirconia thermal barrier coating / M.A. Khan, A.V. Anand, M. Duraiselvam, K.S. Rao, R.A. Singh, S. Jayalakshmi // Materials (Basel). – 2021. – Vol. 14. – DOI: 10.3390/ma14143865. 12. Eff ect of thermal expansion on the high temperature wear resistance of Ni-20%Cr detonation spray coating on IN718 substrate / N. Purushotham, N.L. Parthasarathi, P.S. Babu, G. Sivakumar, B. Rajasekaran // Surface and Coatings Technology. – 2023. –Vol. 462. –DOI: 10.1016/j.surfcoat.2023.129490. 13. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses / F.R. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E.K. McCarthy, M. Canavan, P.J. McNally, D.P. Dowling, V. Nicolosi, M. Celikin // Acta Materialia. – 2020. – Vol. 188. – P. 720–732. – DOI: 10.1016/j. actamat.2020.02.056. 14. Phase transformations and mechanical properties of a Ti36Nb5Zr alloy subjected to thermomechanical treatments / Q.-K. Meng, J.-D. Xu, H. Li, C.-H. Zhao, J.-Q. Qi, F.-X. Wei, Y.-W. Sui, W. Ma // Rare Metals. – 2022. – Vol. 41. – P. 209–217. – DOI: 10.1007/s12598021-01744-x. 15. Strain evolution in Zr-2.5 wt% Nb observed with synchrotron X-ray diff raction / O.V. Shiman, T. Skippon, E. Tulk, M.R. Daymond // Materials Characterization. – 2018. – Vol. 146. – P. 35–46. – DOI: 10.1016/j. matchar.2018.09.022. 16. Microstrain eff ect on thermal properties of nanocrystalline Cu / L.H. Qian, S.C. Wang, Y.H. Zhao, K. Lu // Acta Materialia. – 2002. – Vol. 50. – P. 3425– 3434. – DOI: 10.1016/S1359-6454(02)00155-6. 17. Daymond M.R. Internal stresses in deformed crystalline aggregates // Reviews in Mineralogy and Geochemistry. – 2006. – Vol. 63. – P. 427–458. – DOI: 10.2138/rmg.2006.63.16. 18. Eff ect of macroscopic relaxation on residual stress analysis by diff raction methods / J. Repper, M. Hofmann, C. Krempaszky, B. Regener, E. Berhuber, W. Petry, E. Werner // Journal of Applied Physics. – 2012. – Vol. 112. – P. 64906. – DOI: 10.1063/1.4752877. 19. Fujita F.E. A statistical thermodynamic theory of pre-martensitic tweed structure // Materials Science and Engineering: A. – 1990. – Vol. 127. – P. 243–248. – DOI: 10.1016/0921-5093(90)90315-T. 20. In situ XRD study of the crystal size transition of hydroxyapatite from swine bone / S.M. LondoñoRestrepo, M. Herrera-Lara, L.R. Bernal-Alvarez, E.M. Rivera-Muñoz, M.E. Rodriguez-García // Ceramics International. – 2020. – Vol. 46. – P. 24454–24461. – DOI: 10.1016/j.ceramint.2020.06.230. 21. Optimization of N-doped TiO2 multifunctional thin layers by low frequency PECVDprocess / L.Youssef, A.J. Kinfack Leoga, S. Roualdes, J. Bassil, M. Zakhour, V. Rouessac, A. Ayral, M. Nakhl // Journal of the European Ceramic Society. – 2017. – Vol. 37. – P. 5289– 5303. DOI: 10.1016/j.jeurceramsoc.2017.05.010. 22. Size eff ect of thermal expansion and thermal/ intrinsic stresses in nanostructured thin fi lms: Experiment and model / R. Daniel, D. Holec, M. Bartosik, J. Keckes, C. Mitterer // Acta Materialia. – 2011. – Vol. 59. – P. 6631–6645. – DOI: 10.1016/j. actamat.2011.07.018. 23. Manjunath N., Santhy K., Rajasekaran B. The eff ect of strain induced phase transformation on the thermal expansion compatibility of plasma sprayed spinel coating on SOFC metallic interconnect – Astudy using in situ high temperature X-ray diff raction // International Journal of Hydrogen Energy. – 2023. – Vol. 48 (81). – P. 31767–31768. – DOI: 10.1016/j. ijhydene.2023.04.322. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2023 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1