Obrabotka Metallov 2023 Vol. 25 No. 4

OBRABOTKAMETALLOV Vol. 25 No. 4 2023 283 MATERIAL SCIENCE 24. Oviedo F., Valarezo A. Residual stress in high-velocity impact coatings: parametric fi nite element analysis approach. Journal of Thermal Spray Technology, 2020, vol. 29 (6), pp. 1268–1288. DOI: 10.1007/s11666-02001026-5. 25. Bing Wu, Fengfang Wu, Jinjie Li. Finite element modeling of correlating mechanical properties with erosion wear rate. Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018), June 2018. Atlantis press, 2018, pp. 273–276. DOI: 10.2991/eame-18.2018.57. 26. Singh P.K., HotaA.R., Mishra S.B. Finite element modelling of erosion parameters in Bing boiler components. Asian Journal of Engineering and Applied Technology, 2018, vol. 7 (2), pp. 12–16. DOI: 10.51983/ajeat-2018.7.2.964. 27. Dong X., Li Z., Feng L., Sun Z., Fan C. Modeling, simulation, and analysis of the impact(s) of single angular-type particles on ductile surfaces using smoothed particle hydrodynamics. Powder Technology, 2017, vol. 318, pp. 363–382. DOI: 10.1016/j.powtec.2017.06.011. 28. Leguizamón S., Jahanbakhsh E., Alimirzazadeh S., Maertens A., Avellan F. FVPM numerical simulation of the eff ect of particle shape and elasticity on impact erosion. Wear, 2019, vol. 430–431, pp. 108–119. DOI: 10.1016/j. wear.2019.04.023. 29. Menter F., Lechner R., Matyushenko A. Best practice: generalized K-Ω two-equation turbulence model in ANSYS CFD (GEKO). Technical Report ANSYS. Nurnberg, Germany, 2019. 32 p. 30. ANSYS Fluent Theory Guide. Canonsburg, PA, ANSYS Inc, 2019. 1080 p. 31. Menter F.R., MatyushenkoA., Lechner R. Development of a generalized K-ω two-equation turbulence model. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, vol. 142, pp. 101–109. DOI: 10.1007/9783-030-25253-3_10. 32. Strokach E., Zhukov V., Borovik I., Sternin A., Haidn O.J. Simulation of a GOx-gch4 rocket combustor and the eff ect of the GEKO turbulence model coeffi cients. Aerospace, 2021, vol. 8 (11), p. 341. DOI: 10.3390/aerospace8110341. 33. Pozhidaev A., Kozhevnikov G., Strokach E. Numerical study of turbulence model eff ect on solid particle erosion in gaseous fl ow. AIP Conference Proceedings, 2023, vol. 2549 (1), p. 030003. DOI: 10.1063/5.0130489. 34. Oka Y.I., Ohnogi H., Hosokawa T., Matsumura M. The impact angle dependence of erosion damage caused by solid particle impact. Wear, 1997, vol. 203–204, pp. 573–579. DOI: 10.1016/s0043-1648(96)07430-3. 35. Haugen K., Kvernvold O., Ronold A., Sandberg R. Sand erosion of wear resistant materials: Erosion in choke valves. Wear, 1995, vol. 186–187, pp. 179–188. DOI: 10.1016/0043-1648(95)07158-X. 36. Duarte Ribeiro C.A., Souza F., Salvo R., Santos V. The role of inter-particle collisions on elbow erosion. International Journal of Multiphase Flow, 2016, vol. 89, pp. 1–22. DOI: 10.1016/j.ijmultiphasefl ow.2016.10.001. 37. Recommended practice RP O501 Erosive wear in piping systems. Revision 4.2-2007 (DNV RP O501 – Revision 4.2-2007). Det Norske Veritas, 2007. 43 p. 38. Haider A., Levenspiel O. Drag coeffi cient and terminal velocity of spherical and nonspherical particles. Powder Technology, 1989, vol. 58 (1), pp. 63–70. DOI: 10.1016/0032-5910(89)80008-7. 39. Morsi S.A., Alexander A.J. An investigation of particle trajectories in two-phase fl ow systems. Journal of Fluid Mechanics, 1972, vol. 55, pt. 2, pp. 193–208. DOI: 10.1017/s0022112072001806. 40. ImageJ. Image Processing and Analysis in Java. Available at: https://imagej.net/ij/index.html (accessed 31.10.2023). Confl icts of Interest The authors declare no confl ict of interest. © 2023 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1