Obrabotka Metallov 2023 Vol. 25 No. 4

ОБРАБОТКА МЕТАЛЛОВ Том 25 № 4 2023 32 ТЕХНОЛОГИЯ 27. Kitazono K., Sato E., Kuribayashi K. Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding // Scripta Materialia. – 2004. – Vol. 50 (4). – P. 495–498. – DOI: 10.1016/j. scriptamat.2003.10.035. 28. Asavavisithchai S., Kennedy A.R. The eff ect of Mg addition on the stability of Al-Al2O3 foams made by a powder metallurgy route // Scripta Materialia. – 2006. – Vol. 54 (7). – P. 1331–1334. – DOI: 10.1016/j. scriptamat.2005.12.015. 29. Manufacturing of Al-Mg-Si alloy foam using calciumcarbonate as foaming agent / L.E.G. Cambronero, J.M. Ruiz-Roman, F.A. Corpas, J.M. Ruiz Prieto // Journal of Materials Processing Technology. – 2009. – Vol. 209 (4). – P. 1803–1809. – DOI: 10.1016/j. jmatprotec.2008.04.032. 30. Foaming agents for powder metallurgy production of aluminum foam / T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko, T. Nakamura // Materials Transactions. – 2011. – Vol. 52 (4). – P. 728– 733. – DOI: 10.2320/matertrans.M2010401. 31. Preparation principle and compression properties of cellular Mg–Al–Zn alloy foams fabricated by the gas release reaction powder metallurgy approach / D. Yang, S. Guo, J. Chen, C. Qiu, S.-O. Agbedor, A. Ma, J. Jiang, L. Wang // Journal of Alloys and Compounds. – 2021. – Vol. 857. – P. 158112. – DOI: 10.1016/j. jallcom.2020.158112. 32. Fabrication of aluminium foams from powder by hot extrusion and foaming / M. Shiomi, S. Imagama, K. Osakada, R. Matsumoto // Journal of Materials Processing Technology. – 2010. – Vol. 210 (9). – P. 1203– 1208. – DOI: 10.1016/j.jmatprotec.2010.03.006. 33. Yu C.J. Metal foaming by a powder metallurgy method: Production, properties and applications // Materials Research Innovations. – 1998. – Vol. 2 (3). – P. 181–188. – DOI: 10.1007/s100190050082. 34. Kennedy A. Porous metals and metal foams made from powders // Powder Metallurgy / ed. by K. Kondoh. – InTech, 2012. – DOI: 10.5772/33060. 35. Infl uence of processing parameters on aluminium foam produced by space holder technique / R. Surace, L.A.C. de Filippis, A.D. Ludovico, G. Boghetich // Materials and Design. – 2009. – Vol. 30 (6). – P. 1878– 1885. – DOI: 10.1016/j.matdes.2008.09.027. 36. Powder metallurgy with space holder for porous titanium implants: A review / A. RodriguezContreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, J.M. Manero // Journal of Materials Science and Technology. – 2021. – Vol. 76. – P. 129–149. – DOI: 10.1016/j.jmst.2020.11.005. 37. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route / N. Jha, D.P. Mondal, J. Dutta Majumdar, A. Badkul, A.K. Jha, A.K. Khare // Materials and Design. – 2013. –Vol. 47. – P. 810–819. – DOI: 10.1016/j. matdes.2013.01.005. 38. Sazegaran H., Feizi A., Hojati M. Eff ect of Cr contents on the porosity percentage, microstructure, and mechanical properties of steel foams manufactured by powder metallurgy // Transactions of the Indian Institute of Metals. – 2019. – Vol. 72 (10). – P. 2819–2826. – DOI: 10.1007/s12666-019-01758-1. 39. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review / B. Parveez, N.A. Jamal, H. Anuar, Y. Ahmad, A. Aabid, M. Baig // Materials. – 2022. – Vol. 15. – DOI: 10.3390/ma15155302. 40. Preliminary development of porous aluminum via powder metallurgy technique / N.A. Jamal, O. Maizatul, H. Anuar, F. Yusof, Y. Ahmad Nor, K. Khalid, M.N. Zakaria // Materialwissenschaft und Werkstoff technik. – 2018. – Vol. 49 (4). – P. 460–466. – DOI: 10.1002/mawe.201700269. Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2023 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1