OBRABOTKAMETALLOV Vol. 26 No. 2 2024 172 EQUIPMENT. INSTRUMENTS 20. You K., Yan G., Luo X., Gilchrist M.D., Fang F. Advances in laser assisted machining of hard and brittle materials. Journal of Manufacturing Processes, 2020, vol. 58, pp. 677–692. DOI: 10.1016/j.jmapro.2020.08.034. 21. Skeeba V.Yu., Ivancivsky V.V. Povyshenie eff ektivnosti poverkhnostno-termicheskogo uprochneniya detalei mashin v usloviyakh sovmeshcheniya obrabatyvayushchikh tekhnologii, integriruemykh na edinoi stanochnoi baze [Improving the effi ciency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a singlemachine tool base]. Obrabotkametallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23, no. 3, pp. 45–71. DOI: 10.17212/1994-6309-2021-23.3-45-71. 22. Borisov M.A., Lobanov D.V., Yanyushkin A.S. Gibridnaya tekhnologiya elektrokhimicheskoi obrabotki slozhnoprofi l’nykh izdelii [Hybrid technology of electrochemical processing of complex profi les]. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2019, vol. 21, no. 1, pp. 25–34. DOI: 10.17212/1994-6309-2019-21.1-25-34. 23. Makarov V.M., Lukina S.V. Unikal’naya sinergiya gibridnykh stankov [Unique synergy of hybrid machines]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2016, no. 8, pp. 18–25. 24. Madhavulu G., Ahmed B. Hot machining process for improved metal removal rates in turning operations. Journal of Materials Processing Technology, 1994, vol. 44, pp. 199–206. DOI: 10.1016/0924-0136(94)90432-4. 25. Wu C., Zhang T., Guo W., Meng X., Ding Z., Liang S.Y. Laser-assisted grinding of silicon nitride ceramics: Micro-groove preparation and removal mechanism. Ceramics International, 2022, vol. 48 (21), pp. 32366–32379. DOI: 10.1016/j.ceramint.2022.07.180. 26. Rao T.B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics. Australian Journal of Mechanical Engineering, 2020, vol. 20, pp. 1020–1034. DOI: 10.1080/14484 846.2020.1769458. 27. Olsson M., Akujärvi V., Ståhl J.-E., Bushlya V. Cryogenic and hybrid induction-assisted machining strategies as alternatives for conventional machining of refractory tungsten and niobium. International Journal of Refractory Metals and Hard Materials, 2021, vol. 97, p. 105520. DOI: 10.1016/j.ijrmhm.2021.105520. 28. Boivie K., Karlsen R., Ystgaard P. The concept of hybrid manufacturing for high performance parts. South African Journal of Industrial Engineering, 2012, vol. 23, iss. 2, pp. 106–115. 29. Yanyushkin A.S., Rychkov D.A., Lobanov D.V., Popov V.Yu., Sur’ev A.A., Arkhipov P.V., Kuznetsov A.M., Medvedeva O.I. Abrazivnyi krug dlya elektrokhimicheskogo shlifovaniya s parallel’nym raspolozheniem tokoprovodyashchikh vstavok [Abrasive wheel for electrochemical grinding with parallel arrangement of conductive inserts]. Patent RF, no. 145108 U1, 2014. 30. Lobanov D.V., Arkhipov P.V., Yanyushkin A.S., Skeeba V.Yu. The research into the eff ect of conditions of combined electric powered diamond processing on cutting power. Key Engineering Materials, 2017, vol. 736, pp. 81–85. DOI: 10.4028/www.scientifi c.net/KEM.736.81. 31. Mishin V.A., Borisov M.A., Aleksandrov D.V. Sposob elektroabrazivnoi obrabotki tokoprovodyashchim krugom [Method of electroabrasive processing with a conductive wheel]. Patent RF, no. 2489236 C2, 2013. 32. Albagachiev A.Yu., Yashkov V.A. Vnutrennee shlifovanie na osnove sbornykh abrazivnykh krugov [Internal grinding based on prefabricated abrasive wheels]. Ritm: Remont. Innovatsii. Tekhnologii. Modernizatsiya = RITM: Repair. Innovation. Technologies. Modernization, 2014, no. 5 (93), pp. 102–104. 33. Kozlov A.M., Dolgikh P.P., Kosykh A.E. Vliyanie nesimmetrichnosti khvostovika na rabotu sbornogo preryvistogo shlifoval’nogo kruga [Eff ect nonsymmetric shank for work team fl ash grinding wheels]. Sovremennye fundamental’nye i prikladnye issledovaniya = Modern Fundamental and Applied Researches, 2011, no. 3, pp. 72–76. 34. Kosykh A.E. Vliyanie ugla povorota segmenta sbornogo kruga s uprugo-dempfi ruyushchim elementom na proizvoditel’nost’ shlifovaniya [Eff ect of the angle of rotation of segment with elastic damping elements on grinding performance]. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii = Fundamental and Applied Problems of Engineering and Technology, 2011, no. 2-3 (286), pp. 3–6. 35. Khudobin L.V., Muslina G.R., Pravikov Yu.M. Sbornye shlifoval’nye krugi i ikh tekhnologicheskie vozmozhnosti [Builld-up combined abrasive wheels and their the technology possibilities]. Spravochnik. Inzhenernyi zhurnal = Handbook. An Engineering Journal, 2019, no. 6, pp. 21–29. DOI: 10.14489/hb.2019.06.pp.021-029. 36. Bogutsky V.B. Otsenka primeneniya abrazivnogo instrumenta s preryvistoi poverkhnost’yu dlya zatochki instrumentov iz bystrorezhushchikh stalei [Evaluation of the application abrasive tool with a discontinuous surface for sharpening tools from high-speed steels]. Zhurnal tekhnicheskikh issledovanii = Journal of Technical Research, 2019, vol. 5, no. 4, pp. 3–8. 37. Roshchupkin S. Kharchenko A. Method of building dynamic relations, estimating product and grinding circle shape deviations. MATEC Web of Conferences, 2018, vol. 224, p. 01001. DOI: 10.1051/matecconf/ 201822401001.
RkJQdWJsaXNoZXIy MTk0ODM1