OBRABOTKAMETALLOV Vol. 26 No. 2 2024 197 MATERIAL SCIENCE 3. Dang L., He X., Tang D., Wu B., Li Y. A fatigue life posterior analysis approach for laser-directed energy deposition Ti-6Al-4V alloy based on pore-induced failures by kernel ridge. Engineering Fracture Mechanics, 2023, vol. 289, p. 109433. DOI: 10.1016/j.engfracmech.2023.109433. 4. Ronzhin D.A., Grigoryants A.G., Kholopov A.A. Vliyanie tekhnologicheskikh parametrov na strukturu metalla izdelii, poluchennykh metodom pryamogo lazernogo vyrashchivaniya iz titanovogo poroshka VT6 [Eff ect of operational parameters on metal structure in products manufactured by direct laser deposition from VT6 titanium powder]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering, 2022, no. 9 (750), pp. 30–42. 5. Ravi G.A., Qiu C., Attallah M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Materials Letters, 2016, vol. 179, pp. 104–108. DOI: 10.1016/j. matlet.2016.05.038. 6. MahamoodR.M.,Akinlabi E.T. Laser power and powder fl owrate infl uence on themetallurgy andmicrohardness of laser metal deposited titanium alloy. Materials Today: Proceedings, 2017, vol. 4 (2), pp. 3678–3684. 7. Safarova D.E., Lugovoi M.E., Ponkratova Yu.Yu., Bazaleeva K.O. [Development of a direct laser growth mode for titanium alloy VT23]. VIII Vserossiiskaya konferentsiya po nanomaterialam «NANO 2023» [Proceedings of the VIII All-Russian Conference on Nanomaterials “NANO 2023”]. Moscow, 2023, pp. 242–243. (In Russian). 8. Paydas H., Mertens A., Carrus R., Lecomte-Beckers J., Tchuindjang J.T. Laser cladding as repair technology for Ti–6Al–4V alloy: Infl uence of building strategy on microstructure and hardness. Materials & Design, 2015, vol. 85, pp. 497–510. DOI: 10.1016/j.matdes.2015.07.035. 9. Fatoba O.S., Akinlabi E.T., Akinlabi S.A., Erinosho M.F. Infl uence of process parameters on the mechanical properties of laser deposited Ti-6Al-4V alloy. Taguchi and response surface model approach. Materials Today: Proceedings, 2018, vol. 5 (9), pp. 19181–19190. DOI: 10.1016/j.matpr.2018.06.273. 10. Song L., Xiao H., Ye J., Li S. Direct laser cladding of layer-band-free ultrafi ne Ti6Al4V alloy. Surface and Coatings Technology, 2016, vol. 307, pp. 761–771. DOI: 10.1016/j.surfcoat.2016.10.007. 11. Sinclair L., Clark S.J., Chen Y., Marussi S., Shah S., Magdysyuk O.V., Lee P.D. Sinter formation during directed energy deposition of titanium alloy powders. International Journal of Machine Tools and Manufacture, 2022, vol. 176, p. 103887. DOI: 10.1016/j.ijmachtools.2022.103887. 12. Liu Q. Wang Y., Zheng H., Tang K., Li H., Gong S. TC17 titanium alloy laser melting deposition repair process and properties. Optics & Laser Technology, 2016, vol. 82. pp. 1–9. DOI: 10.1016/j.optlastec.2016.02.013. 13. Wang T., Zhu Y.Y., Zhang S.Q., Tang H.B., Wang H.M. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing. Journal of Alloys and Compounds, 2015, vol. 632, pp. 505–513. DOI: 10.1016/j.jallcom.2015.01.256. 14. Grigor’yants A.G., MisyurovA.I., Tretyakov R.S. Analiz vliyaniya parametrov koaksial’noi lazernoi naplavki na formirovanie valikov [Analysis of the coaxial laser surface coating condition infl uence on the bead formation]. Tekhnologiya mashinostroeniya, 2011, no. 11, pp. 19–21. (In Russian). 15. OST 1-90013–81. Industry standard. Titanium alloys. Stamps. Moscow, VIAM Publ., 1981. 7 p. (In Russian). 16. Gibson I., Rosen D., Stucker B., Khorasani M. Additive manufacturing technologies. 3rd ed. Cham, Switzerland, Springer, 2021. DOI: 10.1007/978-3-030-56127-7. 17. Lewandowski J.J., Seifi M. Metal additive manufacturing: a review of mechanical properties. Annual Review of Materials Research, 2016, vol. 46, pp. 151–186. DOI: 10.1146/annurev-matsci-070115-032024. 18. De Oliveira U., Ocelik V., De Hosson J.T.M. Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 2005, vol. 197 (2–3), pp. 127–136. DOI: 10.1016/j.surfcoat.2004.06.029. 19. Harooni A., Nasiri A.M., Gerlich A.P., Khajepour A., Khalifa A., King J.M. Processing window development for laser cladding of zirconium on zirconium alloy. Journal of Materials Processing Technology, 2016, vol. 230, pp. 263–271. DOI: 10.1016/j.jmatprotec.2015.11.028. 20. Gladkovsky S.V, Veselova V.E, Patselov A.M, Khotinov V.A. Vliyanie deformatsionnoi stabil’nosti b-fazy v titanovom splave VT23 na fazovyi sostav, strukturu i mekhanicheskie svoistva pri rastyazhenii i udarnom izgibe [The infl uence of deformation stability of β-phase in titanium alloy BT23 on the phase composition, microstructure and mechanical properties after tension test and impact test]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie = Bulletin PNRPU. Mechanical engineering, materials science, 2019, vol. 21, no. 4, pp. 26–33. 21. Shvecov O.V., Kondratyev S.Yu. Vliyanie rezhimov zakalki i stareniya na ekspluatatsionnye svoistva splava VT23 [Eff ect of quenching and aging modes on the performance properties of the ВТ23 alloy]. Nauchno-tekhnicheskie
RkJQdWJsaXNoZXIy MTk0ODM1