Obrabotka Metallov 2024 Vol. 26 No. 2

OBRABOTKAMETALLOV Vol. 26 No. 2 2024 219 MATERIAL SCIENCE Processing Technology. – 2020. – Vol. 275. – P. 116157. – DOI: 10.1016/j.jmatprotec.2019.03.017. 5. Fabrication of in situ TiC locally reinforced manganese steel matrix composite via combustion synthesis during casting / S.W. Hu, Y.G. Zhao, Z. Wang, Y.G. Li, Q.C. Jiang // Materials and Design. – 2013. – Vol. 44. – P. 340–345. – DOI: 10.1016/j.matdes.2012.07.063. 6. TiC–Fe-based composite coating prepared by self-propagating high-temperature synthesis / S. He, X. Fan, Q. Chang, L. Xiao // Metallurgical and Materials Transactions B. – 2017. – Vol. 48 (3). – P. 1748– 1753. – DOI: 10.1007/s11663-017-0942-8. 7. Synthesis and mechanical properties of TiC–Fe interpenetrating phase composites fabricated by infi ltration process / Y. Zheng, Y. Zhou, Y. Feng, X. Teng, S. Yan, R. Li, W. Yu, Z. Huang, S. Li, Z. Li // Ceramics International. – 2018. – Vol. 44 (17). – P. 21742–21749. – DOI: 10.1016/j.ceramint.2018.08.268. 8. Eff ects of chromium and carbon content on microstructure and properties of TiC-steel composites / T. Lin, Y. Guo, Z. Wang, H. Shao, H. Lu, F. Li, X. He // International Journal of Refractory Metals and Hard Materials. – 2018. – Vol. 72. – P. 228–235. – DOI: 10.1016/j. ijrmhm.2017.12.037. 9. Persson P., Jarfors A.E.W., Savage S. Self-propagating high-temperature synthesis and liquid-phase sintering of TiC/Fe composites // Journal of Materials Processing Technology. – 2002. – Vol. 127 (2). – P. 131– 139. – DOI: 10.1016/S0924-0136(02)00113-9. 10. Akhtar F., Guo S.J. Microstructure, mechanical and frettingwear properties ofTiC-stainless steel composites // Materials Characterization. – 2008. – Vol. 59 (1). – P. 84–90. – DOI: 10.1016/j.matchar.2006.10.021. 11. Akhtar F., Guo S. On the processing, microstructure, mechanical and wear properties of cermet/ stainless steel layer composites // Acta Materialia. – 2007. – Vol. 55 (4). – P. 1467–1477. – DOI: 10.1016/j. actamat.2006.10.009. 12. Reaction mechanisms of the TiC/Fe composite fabricated by exothermic dispersion from Fe–Ti–C element system / H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, Z. Xie // Powder Technology. – 2013. – Vol. 246. – P. 456–461. – DOI: 10.1016/J.POWTEC.2013.06.002. 13. Wang J., Wang Y., Ding Y. Reaction synthesis of Fe–(Ti,V)C composites // Journal of Materials Processing Technology. – 2008. – Vol. 197 (1–3). – P. 54–58. – DOI: 10.1016/j.jmatprotec.2007.06.016. 14. Jing W., Yisan W., Yichao D. Production of (Ti,V) C reinforced Fe matrix composites // Materials Science and Engineering: A. – 2007. – Vol. 454–455. – P. 75– 79. – DOI: 10.1016/j.msea.2006.11.024. 15. In-situ synthesis of TiC/Fe alloy composites with high strength and hardness by reactive sintering / J. Lee, D. Lee, M.H. Song, W. Rhee, H.J. Ryu, S.H. Hong // Journal of Materials Science and Technology. – 2018. – Vol. 34 (8). – P. 1397–1404. – DOI: 10.1016/j. jmst.2017.03.006. 16. A TiCχ reinforced Fe(Al) matrix composite using in-situ reaction / X. Chen, H. Zhain, W. Wang, S. Li, Z. Huang // Progress in Natural Science: Materials International. – 2013. – Vol. 23 (1). – P. 13–17. – DOI: 10.1016/j.pnsc.2013.01.002. 17. Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering / B. Li, Y. Liu, H. Cao, L. He, J. Li // Materials Letters. – 2009. – Vol. 63 (23). – P. 2010–2012. – DOI: 10.1016/j. matlet.2009.06.026. 18. Fabrication and mechanical properties of TiC reinforced CoCrFeMnNi high-entropy alloy composite by water atomization and spark plasma sintering / D. Yim, P. Sathiyamoorthi, S.-J. Hong, H.S. Kim // Journal of Alloys and Compounds. – 2019. – Vol. 781. – P. 389–396. – DOI: 10.1016/j.jallcom.2018.12.119 0925-8388. 19. Composites fabricated by self-propagating hightemperature synthesis / Z.Y. Fu, H. Wang, W.M. Wang, R.Z. Yuan // Journal of Materials Processing Technology. – 2003. – Vol. 137 (1–3) – P. 30–34. – DOI: 10.1016/ s0924-0136(02)01061-0. 20. Фадин В.В., Колубаев А.В., Алеутдинова М.И. Композиты на основе карбида титана, полученного методом технологического горения // Перспективные материалы. – 2011. – № 4. – С. 91–96. 21. Телепа В.Т., Щербаков В.А., Щербаков А.В. Получение композита TiC–30 вес. % Fe методом электротеплового взрыва под давлением // Письма о материалах. – 2016. – Т. 6, № 4. – С. 286–289. 22. Study of formation behavior of TiC in the Fe– Ti–C system during combustion synthesis / M.X. Zhang, Q.D. Hu, B. Huang, J.Z. Li, J.G. Li // International Journal of Refractory Metals and Hard Materials. – 2011. – Vol. 29 (3). – P. 356–360. – DOI: 10.1016/j. ijrmhm.2011.01.001. 23. Formation and growth mechanism of TiC terraces during self-propagating high-temperature synthesis from a Fe–Ti–C system / M.X. Zhang, Q.D. Hu, Y.Q. Huo, B. Huang, J.G. Li // Journal of Crystal Growth. – 2012. – Vol. 355 (1). – P. 140–144. – DOI: 10.1016/j.jcrysgro.2012.06.045. 24. Rahimi-Vahedi A., Adeli M., Saghafi an H. Formation of Fe–TiC composite clad layers on steel using the combustion synthesis process // Surface and Coatings Technology. – 2018. – Vol. 347. – P. 217–224. – DOI: 10.1016/j.surfcoat.2018.04.086. 25. Characteristics of the combustion synthesis of TiC and Fe–TiC composites / A. Saidi, A. Chrysanthou, J.V. Wood, J.L.F. Kellie // Journal Materials Science. – 1994. – Vol. 29 (19). – P. 4993–4998. – DOI: 10.1007/ BF01151089.

RkJQdWJsaXNoZXIy MTk0ODM1