Obrabotka Metallov 2024 Vol. 26 No. 2

ОБРАБОТКА МЕТАЛЛОВ Том 26 № 2 2024 66 ТЕХНОЛОГИЯ стики, как расход порошка и диаметр лазерного пучка. Их изменение позволяет повысить производительность на 10–15 %. Список литературы 1. Gadagi B., Lekurwale R. A review on advances in 3D metal printing // Materials Today: Proceedings. – 2021. – Vol. 45. – P. 277–283. – DOI: 10.1016/j.matpr.2020.10.436. 2. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications / D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz // Materials Today. – 2021. – Vol. 49. – P. 271–295. – DOI: 10.1016/j. mattod.2021.03.020. 3. Hardened austenite steel with columnar sub-grain structure formed by laser melting / K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen // Materials Science and Engineering:A. – 2015. –Vol. 625. – P. 221–229. – DOI: 10.1016/j. msea.2014.12.018. 4. 316L stainless steel mechanical and tribological behavior – A comparison between selective laser melting, hot pressing and conventional casting / F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva, G. Miranda // Additive Manufacturing. – 2017. – Vol. 16. – P. 81–89. – DOI: 10.1016/j. addma.2017.05.007. 5. Analysis of the process parameter infl uence in laser cladding of 316L stainless steel / P. Alvarez, M.Á. Montealegre, J.F. Pulido-Jiménez, J.I. Arrizubieta // Journal of Manufacturing and Materials Processing. – 2018. – Vol. 2 (3). – P. 55. – DOI: 10.3390/jmmp2030055. 6. Pinkerton A.J. Lasers in additive manufacturing // Optics & Laser Technology. – 2016. – Vol. 78. – P. 25– 32. – DOI: 10.1016/j.optlastec.2015.09.025. 7. Goodarzi D.M., Pekkarinen J., Salminen A. Analysis of laser cladding process parameter infl uence on the clad bead geometry // Welding in the World. – 2017. – Vol. 61 (5). – P. 883–891. – DOI: 10.1007/s40194-0170495-0. 8. Dutta B. Directed Energy Deposition (DED) Technology // Encyclopedia of Materials: Metals and Alloys. – 2022. – Vol. 3. – P. 66–84. – DOI: 10.1016/ B978-0-12-819726-4.00035-1. 9. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition / K. Shah, Izhar ul Haq, A. Khan, S.A. Shah, M. Khan, A.J. Pinkerton // Materials & Design. – 2014. – Vol. 54. – P. 531–538. – DOI: 10.1016/j.matdes.2013.08.079. 10. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling / B.E. Carroll, R.A. Otis, J.P. Borgonia, J. Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z.-K. Liu, A.M. Beese // Acta Materialia. – 2016. – Vol. 108. – P. 46–54. – DOI: 10.1016/j.actamat.2016.02.019. 11. Laser rapid manufacturing of stainless steel 316L/Inconel718 functionally graded materials: microstructure evolution and mechanical properties / D. Wu, X. Liang, Q. Li, L. Jiang // International Journal of Optics. – 2010. – Vol. 2010. – P. 802385. – DOI: 10.1155/2010/802385. 12. Development and characterization of 316L/Inconel 625 functionally graded material fabricated by laser direct metal deposition / B. Chen, Y. Su, Z. Xie, C. Tan, J. Feng // Optics&Laser Technology. – 2020. –Vol. 123. – P. 105916. – DOI: 10.1016/j.optlastec.2019.105916. 13. Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting / X. Mei, X. Wang, Y. Peng, H. Gu, G. Zhong, Y. Sh // Material Science and Engineering: A. – 2019. – Vol. 758. – P. 185–191. – DOI: 10.1016/j.msea.2019.05.011. 14. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process / H. El Cheikh, B. Courant, S. Branchu, J.-Y. Hascoët, R. Guillén // Optics and Laser in Engineering. – 2012. – Vol. 50 (3). – P. 413–422. – DOI: 10.1016/j. optlaseng.2011.10.014. 15. Eff ect of process parameters on the cladding track geometry fabricated by laser cladding /Y. Zhao, Ch. Guan, L. Chen, J. Sun, T. Yu // Optik. – 2020. – Vol. 223. – P. 165447. – DOI: 10.1016/j.ijleo.2020.165447. 16. An investigation on the eff ect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition / A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino // Materials Science and Engineering: A. – 2020. – Vol. 780. – P. 139179. – DOI: 10.1016/j. msea.2020.139179. 17. Self-heating behavior during cyclic loadings of 316L stainless steel specimens manufactured or repaired by Directed Energy Deposition / Y. Balit, L.-R. Joly, F. Szmytka, S. Durbecq, E. Charkaluk, A. Constantinescu // Materials Science and Engineering: A. – 2020. – Vol. 786. – P. 139476. – DOI: 10.1016/j. msea.2020.139476. 18. Tensile and ductile fracture properties of asprinted 316L stainless steel thin walls obtained by directed energy deposition / P. Margerit, D. WeiszPatrault, K. Ravi-Chandar, A. Constantinescu // Additive Manufacturing. – 2021. – Vol. 37. – P. 101664. – DOI: 10.1016/j.addma.2020.101664. 19. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phasefi eld approach / E. Azinpour, R. Darabi, J.C. de Sa, A. Santos, J. Hodek, J. Dzugan // Finite Elements in

RkJQdWJsaXNoZXIy MTk0ODM1