Obrabotka Metallov 2024 Vol. 26 No. 3

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 231 MATERIAL SCIENCE 3. Willmott P. An introduction to synchrotron radiation: techniques and applications. Hoboken, John Wiley & Sons, 2019. 503 p. ISBN 9781119280392. 4. Hoff man A. The physics of synchrotron radiation. New York, Cambridge University Press, 2003. 362 p. 5. Bilderback D.H., Freund A.K., Knapp G.S., Mills D.M. The historical development of cryogenically cooled monochromators for third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2000, vol. 7 (2), pp. 53–60. DOI: 10.1107/S0909049500000650. 6. Darwin C.G. The refl exion of x-rays from imperfect crystals. Journal of Science, 1922, vol. 43 (257), pp. 800– 829. DOI: 10.1080/14786442208633940. 7. Adronova N.V., Kohn V.G., ChechinA.I. Multilayer mirrors as synchrotron radiation monochromators. Nuclear Instruments in Physics Research, 1986, vol. 359 (1–2), pp. 131–134. DOI: 10.1016/0168-9002(94)01681-x. 8. Zhang F., Allen A.J., Levine L.E., Long G.G., Kuzmenko I., Ilavsky J. High-effi ciency coherence-preserving harmonic rejection with crystal optics. Journal of Synchrotron Radiation, 2018, vol. 25 (5), pp. 1354–1361. DOI: 10.1107/S1600577518009645. 9. Hart M., Berman L. X-ray optics for synchrotron radiation; Perfect crystals, mirrors and multilayers. Acta Crystallographica. Section A, 1998, vol. 54 (6), pp. 850–858. DOI: 10.1107/S0108767398011283. 10. Chkhalo N.I., Garakhin S.A., Malyshev I.V., Polkovnikov V.N., Toropov M.N., Salashchenko N.N., Ulasevich B.A., Rakshun Ya.V., Chernov V.A., Dolbnya I.P., Raschenko S.V. Project of a two-mirror monochromator for the photon energy range 8–36 keV for the “SKIF” synchrotron. Technical Physics, 2022, vol. 67 (8), pp. 1075– 1080. DOI: 10.21883/TP.2022.08.54576.100-22. Translated from Zhurnal tekhnicheskoi fi ziki, 2022, vol. 92 (8), pp. 1261–1266. DOI: 10.21883/JTF.2022.08.52794.100-22. 11. Shaposhnikov R.A., Zuev S.Yu., Polkovnikov V.N., Salashchenko N.N., Chkhalo N.I. Ru/Sr multilayer mirrors for the spectral range 9–12 nm. Technical Physics, 2022, vol. 67 (8), pp. 996–1001. DOI: 10.21883/ TP.2022.08.54562.124-22. Translated from Zhurnal tekhnicheskoi fi ziki, 2022, vol. 92 (8), pp. 1179–1184. DOI: 10.21883/JTF.2022.08.52780.124-22. 12. Bigault T., Ziegler E.,Morawe C., Hustache R.,Massonnat J.Y., RostaingG. Doublemultilayer monochromator to tailor bending magnet radiation spectrum. Proceedings of SPIE, 2003, vol. 5195 (1). Crystals, Multilayers, and Other Synchrotron optics, pp. 12–20. DOI: 10.1117/12.515980. 13. Flannery B.P., Deckman H.W., Roberge W.G., D’Amico K.L. Three-dimensional X-ray microtomography. Science, 1987, vol. 237 (4821), pp. 1439–1444. DOI: 10.1126/science.237.4821.1439. 14. Rack A., Weitkamp T., Riotte M., Grigoriev D., Rack T., Helfen L., Baumbach T., Dietsch R., Holz T., Kramer M., Siewert F., Meduna M., Cloetens P., Ziegler E. Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging. Journal of Synchrotron Radiation, 2010, vol. 17 (4), pp. 496– 510. DOI: 10.1107/S0909049510011623. 15. Ziegler E., Hignette O., Morawe Ch., Tucoulou R. High-effi ciency tunable X-ray focusing optics using mirrors and laterally-grated multilayers. Nuclear Instruments & Methods in Physics Research, 2001, vol. 467–468 (2), pp. 954–957. DOI: 10.1016/S0168-9002(01)00533-2. 16. Montcalm C., Kearney A., Slaughter J.M., Sullivan B.T., Chaker M., Pepin H., Falco Ch.M. Survey of Ti-, B-, and Y-based soft x-ray – extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region. Applied Optics, 1996, vol. 35 (25), pp. 5134–5147. DOI: 10.1364/ao.35.005134. 17. Davis B., Stempel W.M. An experimental study of the refl ection of x-rays from calcite. Physical Review, 1921, vol. 17 (5), pp. 608–623. DOI: 10.1103/physrev.17.608. 18. Punegov V.I. X-ray Laue diff raction by sectioned multilayers. I. Pendellosung eff ect and rocking curve. Journal of Synchrotron Radiation, 2021, vol. 28 (5), pp. 1466–1475. DOI: 10.1107/S1600577521006408. 19. DuMond J.W.M. Theory of use of more than two successive X-ray crystal refl ections to obtain increased resolving power. Physical Review Journals, 1937, vol. 52 (8), pp. 872–883. DOI: 10.1103/physrev.52.872. 20. Kohn V.G., Chumakov A.I., Ruff er R. Wave theory of focusing monochromator of synchrotron radiation. Journal of Synchrotron Radiation, 2009, vol. 19 (5), pp. 635–641. DOI: 10.1107/S090904950902319X. 21. Toellner T.S., Hu M.Y., Sturhahn W., Bortel G., Alp E.E., Zhao J. Crystal monochromator with a resolution beyond 108. Journal of Synchrotron Radiation, 2001, vol. 8 (4), pp. 1082–1086. DOI: 10.1107/s0909049501007257. 22. Gog T. Performance of quartz- and sapphire-based double-crystal high-resolution (∼10 meV) RIXS monochromators under varying power loads. Journal of Synchrotron Radiation, 2018, vol. 25 (4), pp. 1030–1035. DOI: 10.1107/S1600577518005945. 23. Chernov V.A., Bataev I.A., Rakshun Ya.V., et al. A concept of «materials» diff raction and imaging beamline for SKIF: Siberian circular photon source. Review of Scientifi c Instruments, 2023, vol. 94 (1), p. 013305. DOI: 10.1063/5.0103481.

RkJQdWJsaXNoZXIy MTk0ODM1