Obrabotka Metallov 2024 Vol. 26 No. 3

OBRABOTKAMETALLOV Vol. 26 No. 3 2024 245 MATERIAL SCIENCE of Material Engineering and Mechanical Engineering (MEES 2015). – World Scientifi c, 2016. – P. 1283– 1291. – DOI: 10.1142/9789814759687_0144. 14. Radek N. Experimental investigations of the Cu-Mo and Cu-Ti electro-spark coatings modifi ed by laser beam // Advances in Manufacturing Science and Technology. – 2008. – Vol. 32. – P. 53–68. 15. Kayali Yu., Yalçin M.C., Buyuksagis A. Eff ect of electro spark deposition coatings on surface hardness and corrosion resistance of ductile iron // Canadian Metallurgical Quarterly. – 2023. – Vol. 62. – P. 483– 496. – DOI: 10.1080/00084433.2022.2119039. 16. In-situ TIC-reinforced NI-based composite coatings fabricated by ultrasonic-assisted electrospark powder deposition / H. Zhao, Ch. Gao, Ch. Guo, B. Xu, X.Yu. Wu, J.G. Lei // Journal of Asian Ceramic Societies. – 2023. – Vol. 11. – P. 26–38. – DOI: 10.1080/ 21870764.2022.2142368. 17. Burkov A.A., Pyachin S.A. Formation of WC–Co coating by a novel technique of electrospark granules deposition // Materials & Design. – 2015. – Vol. 80. – P. 109–115. – DOI: 10.1016/j.matdes.2015.05.008. 18. Бурков А.А. Получение аморфных покрытий электроискровой обработкой стали 35 в смеси железных гранул с CrMoWCBSi порошком // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 4. – С. 19–30. – DOI: 10.17212/1994-6309-2019-21.4-19-30. 19. Burkov A.A., Kulik M.A. Wear-resistant and anticorrosive coatings based on chrome carbide Cr7C3 obtained by electric spark deposition // Protection of Metals and Physical Chemistry of Surfaces. – 2020. – Vol. 56. – P. 1217–1221. – DOI: 10.1134/ S2070205120060064. 20. Бурков А.А. Одностадийное осаждение Ti–Cu покрытия электроискровой обработкой титанового сплава Ti6Al4V анодом из медных и титановых гранул // Фундаментальные проблемы современного материаловедения. – 2023. – Т. 20. – С. 372–380. – DOI: 10.25712/ASTU.1811-1416.2023.03.010. 21. Burkov A.A., Chigrin P.G., Dvornik M.I. Electrospark CuTi coatings on titanium alloy Ti6Al4V: corrosion and wear properties // Surface and Coatings Technology. – 2023. – Vol. 469. – P. 129796. – DOI: 10.1016/j.surfcoat.2023.129796. 22. Durdu S., Usta M., Berkem A.S. Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation // Surface and Coatings Technology. – 2016. – Vol. 301. – P. 85–93. – DOI: 10.1016/j. surfcoat.2023.129796. 23. Comparative analysis of insulating properties of plasma and thermally grown alumina fi lms on electrospark aluminide coated 9Cr steels / N.I. Jamnapara, S. Frangini, J. Alphonsa, N.L. Chauhan, S. Mukherjee // Surface and Coatings Technology. – 2015. – Vol. 266. – P. 146–150. – DOI: 10.1016/j.surfcoat.2015.02.028. 24. On the selection of Ti–Cu alloys for thixoforming processes: phase diagramandmicrostructural evaluation / K.N. Campo, D.D. de Lima, É.S.N. Lopes, R. Caram // Journal of Materials Science. – 2015. – Vol. 50. – P. 8007–8017. 25. Fan Y., Fan J., Wang C. Formation of typical Ti–Cu intermetallic phases via a liquid-solid reaction approach // Intermetallics. – 2019. – Vol. 113. – P. 106577. – DOI: 10.1016/j.intermet.2019.106577. 26. Eff ect of temperature on morphology and wear of a Cu-Ti-TiC MMC sintered by abnormal glow discharge / C.D. Bohórquez, S.P. Pérez, A. Sarmiento, M.E. Mendoza // Materials Research Express. – 2020. – Vol. 7. – P. 026501. – DOI: 10.1088/2053-1591/ab6e3b. 27. A study of the electrochemical formation of Cu(I)-BTA fi lms on copper electrodes and the mechanism of copper corrosion inhibition in aqueous chloride/benzotriazole solutions / A.D. Modestov, G.D. Zhou, Y.P. Wu, T. Notoya, D.P. Schweinsberg // Corrosion Science. – 1994. – Vol. 36. – P. 1931–1946. – DOI: 10.1016/0010-938X(94)90028-0. 28. Rosalbino F., Scavino G. Corrosion behaviour assessment of cast and HIPed Stellite 6 alloy in a chloride-containing environment // Electrochimica Acta. – 2013. – Vol. 111. – P. 656–662. – DOI: 10.1016/j. electacta.2013.08.019. 29. Study on the technology of surface strengthening Ti–6Al–4V alloy by near-dry multi-fl ow channel electrode electrical discharge machining / Y. Ding, L. Kong, W. Lei, Q. Li, K. Ding, Y. He // Journal of Materials Research and Technology. – 2024. – Vol. 28. – P. 2219–2234. – DOI: 10.1016/j. jmrt.2023.12.133. 30. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-lasermelted Ti6Al4V-xCu alloys / S. Guo, Y. Lu, S. Wu, L. Liu, M. He, C. Zhao, J. Lin // Materials Science and Engineering: C. – 2017. – Vol. 72. – Р. 631–640. – DOI: 10.1016/j.msec.2016.11.126. 31. Corrosion mechanisms in titanium oxide-based fi lms produced by anodic treatment / A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, J.C.S. Fernandes // Electrochimica Acta. – 2017. – Vol. 234. – Р. 16–27. – DOI: 10.1016/j. electacta.2017.03.011. 32. Improvement in antibacterial ability and cell cytotoxicity of Ti–Cu alloy by anodic oxidation / S. Cao., Z.M. Zhang, J.Q. Zhang, R.X. Wang, X.Y. Wang, L. Yang, E.L. Zhang // Rare Metals. – 2022. – Vol. 41. – P. 594–609. – DOI: 10.1007/s12598-021-01806-0. 33. Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching / M. Lu, Z. Zhang, J. Zhang,

RkJQdWJsaXNoZXIy MTk0ODM1