OBRABOTKAMETALLOV Vol. 26 No. 3 2024 43 TECHNOLOGY 46. Quantitative analysis of mixed niobiumtitanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements. / J. Webel, H. Mohrbacher, E. Detemple, D. Britz, F. Mücklich // Journal of Materials Research and Technology. – 2022. – Vol. 18. – P. 2048–2063. – DOI: 10.1016/j.jmrt.2022.03.098. 47. Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning / J. Webel, A. Herges, D. Britz, E. Detemple, V. Flaxa, H. Mohrbacher, F. Mücklich // Metals. – 2020. – Vol. 10. – P. 243. – DOI: 10.3390/met10020243. 48. Cuddy L.J. The eff ect of microalloy concentration on the recrystallization of austenite during hot deformation // Thermomechanical Processing of Microalloyed Austenite, Warrendale, PA: The Metallurgical Society / AIME, 1982. – P.129–140. – ISBN 0-89520-398-7. 49. On strength of microalloyed steels: an interpretive review / A.J. DeArdo, M.J. Hua, K.G. Cho, C.I. Garcia // Materials Science andTechnology. – 2009. –Vol. 25 (9). – P. 1074–1082. – DOI: 10.1179/174328409X455233. 50. Modern HSLA steels and role of nonrecrystallisation temperature / S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas // International Materials Reviews. – 2012. – Vol. 57 (4). – P. 187–207. – DOI: 10.1179/17432 80411y.0000000013. 51. DeArdo A.J. Niobium in modern steels // International Materials Reviews. – 2003. – Vol. 48 (6). – P. 371–402. – DOI: 10.1179/095066003225008833. 52. Gladman T. The physical metallurgy of microalloyed steels. – Institute of Materials, 1997. – 363 p. – (Book / the Institute of Materials; vol. 615). – ISBN 0901716812. 53. Strengthening from Nb-rich clusters in a Nbmicroalloyed steel / K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F. Barbaro, C.R. Killmore, S.P. Ringer // Scripta Materialia. – 2012. – Vol. 66 (9). – P. 710–713. – DOI: 10.1016/j.scriptamat.2012.01.029. 54. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their eff ect on mechanical properties / R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai // Acta Materialia. – 1999. – Vol. 47 (12). – P. 3475–3481. – DOI: 10.1016/S1359-6454(99)00190-1. 55. Zhang L., Kannengiesser T. Austenite grain growth and microstructure control in simulated heat aff ected zones of microalloyed HSLA steel // Materials Science and Engineering: A. – 2014. – Vol. 613. – P. 326– 335. – DOI: 10.1016/j.msea.2014.06.106. 56. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process / Y. Gu, P. Tian, X. Wang, X.-l. Han, B. Liao, F.-r. Xiao // Materials and Design. – 2016. – Vol.89.–P.589–596.–DOI:10.1016/j.matdes.2015.09.039. 57. Development of high HAZ toughness steel plates for box columns with high heat input welding / A. Kojima, K.-I. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, K. Azuma // Nippon Steel Technical Report. – 2004. – N 90. – P. 39–44. 58. Eff ect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in lowcarbon HSLA steels / Y. Chen, D. Zhang, Y. Liu, H. Li, D. Xu // Materials Characterization. – 2013. – Vol. 84. – P. 232–239. – DOI: 10.1016/j.matchar.2013.08.005. 59. Karjalainen L.P., Maccagno T.M., Jonas J.J. Softening and fl ow stress behaviour of Nb microalloyed steels during hot rolling simulation // ISIJ International. – 1995. – Vol. 35 (12). – P. 1523–1531. – DOI: 10.2355/ isijinternational.35.1523. 60. Hansen S.S., Sande J.B.V., Cohen M. Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steels // Metallurgical Transactions A. – 1980. – Vol. 11. – P. 387–402. – DOI: 10.1007/BF02654563. 61. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel / J. Hu, L.X. Du, H. Xie, X.H. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2014. – Vol. 607. – P. 122–131. – DOI: 10.1016/j.msea.2014.03.133. 62. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling / J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2013. – Vol. 585. – P. 197–204. – DOI: 10.1016/j. msea.2013.07.071. 63. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel / J. Byun, J. Shim, Y.W. Cho, D.N. Lee // Acta Materialia. – 2003. – Vol. 51 (6). – P. 1593–1606. – DOI: 10.1016/S13596454(02)00560-8. 64. Crystallography of intragranular ferrite formed on (MnS + V(C, N)) complex precipitate in austenite / G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori // Scripta Materialia. – 2003. – Vol. 48 (4). – P. 371–377. – DOI: 10.1016/S13596462(02)00451-7. 65. Eff ect of V and N precipitation on acicular ferrite formation in sulfur-lean vanadium steels / C. Capdevila, C. García-Mateo, J. Chao, F.G. Caballero // Metallurgical and Materials Transactions A. – 2009. – Vol. 40 (3). – P. 522–538. – DOI: 10.1007/s11661-008-9730-z. 66. Babu S.S., Bhadeshia H.K.D.H. Mechanism of the transition from bainite to acicular ferrite // Materials Transactions, JIM. – 1991. – Vol. 32 (8). – P. 679–688. – DOI: 10.2320/matertrans1989.32.679. 67. Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling / I. Madariaga,
RkJQdWJsaXNoZXIy MTk0ODM1