OBRABOTKAMETALLOV Vol. 26 No. 3 2024 51 TECHNOLOGY 88. Misra D., Jansto S.G. Niobium-based alloy design for structural applications: processing-structure-property paradigm. HSLA Steels 2015, Microalloying 2015 & Off shore Engineering Steels 2015: conference proceedings. Hoboken, NJ, USA, John Wiley & Sons, Inc., 2015, pp. 261–266. 89. Challa V.S.A., Zhou W.H., Misra R.D.K., O’Malley R., Jansto S.G. The eff ect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting. Materials Science and Engineering: A, 2014, vol. 595, pp. 143–153. DOI: 10.1016/j.msea.2013.12.002. 90. Sarmento E.C., Evans J. Eff ect of strain accumulation and dynamic recrystallisation on the fl ow stress of HSLA steels during fl at rolling. Proceedings of an International Symposium on Processing, Microstructure, and Properties of HSLA Steels: ISS-AIME 1992, Warrendale, Pennsylvania, 1992, pp. 105–112. 91. Yada H., Matsumura Y., Senuma T. A new thermomechanical heat treatment for grain refi ning in low carbon steels. Proceedings of the 1st International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC ‘88), Keidanren Kaikan, Tokyo, Japan, 1988, p. 200. 92. Siciliano F., Rodrigues S.F., Aranas Jr C., Jonas J.J. The dynamic transformation of ferrite above Ae3 and the consequences on hot rolling of steels. Tecnologia em Metalurgia, Materiais e Mineração, 2020, vol. 17 (2), pp. 90–95. DOI: 10.4322/2176-1523.20202230. 93. Tamura I., Sekine H., Tanaka T. Thermomechanical processing of high-strength low-alloy steels. ButterworthHeinemann, 2013. ISBN 0-408-11034-1. 94. Nasiri Z., Ghaemifar S., Naghizadeh M., Mirzadeh H. Thermal mechanisms of grain refi nement in steels: A review. Metals and Materials International, 2021, vol. 27, pp. 2078–2094. DOI: 10.1007/s12540-020-00700-1. 95. Sakai T., Belyakov A., Kaibyshev R., Miura H., Jonas J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Progress in Materials Science, 2014, vol. 60, pp. 130–207. DOI: 10.1016/j.pmatsci.2013.09.002. 96. Huang K.E., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials. Materials & Design, 2016, vol. 111 (8), pp. 548–574. DOI: 10.1016/j.matdes.2016.09.012. 97. Sanz L., Pereda B., López B. Eff ect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb. Materials Science and Engineering: A, 2017, vol. 685, pp. 377–390. DOI: 10.1016/j.msea.2017.01.014. 98. Buchmayr B. Thermomechanical Treatment of steels – A real disruptive technology since decades. Steel Research International, 2017, vol. 88 (10), p. 1700182. DOI: 10.1002/srin.201700182. 99. Funakawa Y., Shiozaki T., Tomita K., Yamamoto T., Maeda E. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ International, 2004, vol. 44 (11), pp. 1945–1951. DOI: 10.2355/isijinternational.44.1945. 100. ZaitsevA.,Arutyunyan N. Low-carbon Ti-Mo microalloyed hot rolled steels: special features of the formation of the structural state and mechanical properties. Metals, 2021, vol. 11 (10), p. 1584. DOI: 10.3390/met11101584. 101. Zhao J., Jiang Z. Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, vol. 94, pp. 174–242. DOI: 10.1016/j.pmatsci.2018.01.006. 102. Shaposhnikov N.G., KoldaevA.V., ZaitsevA.I., Rodionova I.G., Dyakonov D.L., Arutyunyan N.A. Features of titanium carbide precipitation in low-carbon high-strength steels microalloyed with titanium and molybdenum. Metallurgist, 2016, vol. 60 (7–8), pp. 810–816. DOI: 10.1007/s11015-016-0370-z. Translated from Metallurg, 2016, no. 8, pp. 49–54. 103. Skeeba V.Yu., Ivancivsky V.V., Martyushev N.V., Lobanov D.V., Vakhrushev N.V., ZhigulevA.K. Numerical simulation of temperature fi eld in steel under action of electron beam heating source. Key Engineering Materials, 2016, vol. 712, pp. 105–111. DOI: 10.4028/www.scientifi c.net/KEM.712.105. 104. Adigamov R.R., Baraboshkin K.A., Yusupov V.S. Study of the phase transition kinetics in the experimental melting of rolled coils of K55 grade strength steel for pipes manufacturing. Steel in Translation, 2022, vol. 52 (11), pp. 1098–1105. DOI: 10.3103/S096709122211002X. 105. Adigamov R.R., Baraboshkin K.A., Mishnev P.A., Karlina A.I. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill. CIS Iron and Steel Review, 2022, Vol. 24, pp. 60–66. DOI: 10.17580/ cisisr.2022.02.09. Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).
RkJQdWJsaXNoZXIy MTk0ODM1