OBRABOTKAMETALLOV Vol. 26 No. 4 2024 107 EQUIPMENT. INSTRUMENTS Machine Tools and Manufacture. – 2015. – Vol. 95. – P. 13–19. – DOI: 10.1016/j.ijmachtools.2015.05.003. 16. Double-sided milling of thin-walled parts by dual collaborative parallel kinematic machines / R. Fu, P. Curley, C. Higgins, Z. Kilic, D. Sun, A. Murphy, Y. Jin // Journal of Materials Processing Technology. – 2022. – Vol. 299. – P. 117395. – DOI: 10.1016/j.jmatprotec.2021.117395. 17. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces / X. Zhao, B. Tao, L. Yang, H. Ding // Robotics and Computer-Integrated Manufacturing. – 2020. – Vol. 63. – P. 101889. – DOI: 10.1016/j.rcim.2019.101889. 18. Yan Y., Xu J., Wiercigroch M. Stability and dynamics of parallel plunge grinding // International Journal of Advanced and Manufacturing Technology. – 2018. – Vol. 99. – P. 881–895. – DOI: 10.1007/s00170018-2440-9. 19. Yamato S., Nakanishi K., Suzuki N. Development of automatic chatter suppression system in parallel milling by real-time spindle speed control with observer-based chatter monitoring // International Journal of Precision Engineering and Manufacturing. – 2021. – Vol. 22. – P. 227–240. – DOI: 10.1007/s12541-02100469-2. 20. Weck M., Staimer D. Parallel kinematic machine tools – current state and future potentials // CIRPAnnals – Manufacturing Technology. – 2002. – Vol. 51 (2). – P. 671–683. – DOI: 10.1016/S0007-8506(07)61706-5. 21. Azvar M., Budak E. Multi-dimensional chatter stability for enhanced productivity in diff erent parallel turning strategies // International Journal of Machine Tools and Manufacture. – 2017. – Vol. 123. – P. 116– 128. – DOI: 10.1016/j.ijmachtools.2017.08.005. 22. Kanakaraju V., Hassan F., Kalidasan R. Numerical analysis of surface integrity in parallel turning. Part A: Infl uence of cutting tool nose radius // Materials Today: Proceedings. – 2021. – Vol. 38 (1). – P. 186– 190. – DOI: 10.1016/j.matpr.2020.06.511. 23. Numerical analysis of surface integrity in parallel turning. Part B: Infl uence of cutting tool chamfer angle and chamfer width / F. Hassan, V. Kanakaraju, R. Kalidasan, G. Norkey // Materials Today: Proceedings. – 2021. – Vol. 44 (1). – P. 266–270. – DOI: 10.1016/j. matpr.2020.09.464. 24. Brecher C., Trofi mov Y., Bäumler S. Holistic modelling of process machine interactions in parallel milling // CIRP Annals – Manufacturing Technology. – 2011. – Vol. 60 (1). – P. 387–390. – DOI: 10.1016/j. cirp.2011.03.025. 25. Yusubov N.D., Abbasova H.M., Khankishiyev İ.A. Entwicklung einer projektierungstheorie für die mehrwerkzeugbearbeitung mit den möglichkeiten der modernen CNC-werkzeugmaschinen // Forschung im Ingenieurwesen. – 2021. – Vol. 85. – P. 661–678. – DOI: 10.1007/s10010-021-00478-7. 26. Yusubov N.D. Matrix models of the accuracy in multitool two-support setup // Russian Engineering Research. – 2009. – Vol. 29. – P. 268–271. – DOI: 10.3103/ S1068798X09030125. 27. Increasing the productivity of multitool machining on automated lathes by optimizing the machining plan / S.A. Bogatenkov, N.S. Sazonova, N.D. Yusubov, P.V. Mammadov, R.I. Bazhenov // Russian Engineering Research. – 2021. – Vol. 41 (11). – P. 1071–1074. – DOI: 10.3103/S1068798X21110046. 28. Increasing the productivity of multitool machining on automated lathes by optimizing the tool positions / S.A. Bogatenkov, N.S. Sazonova, V.I. Guzeev, N.D. Yusubov, G.M. Abbasova // Russian Engineering Research. – 2021. – Vol. 41 (11). – P. 1075–1079. – DOI: 10.3103/S1068798X21110058. 29. Usher J.M., Bowden R.O. The application of genetic algorithms to operation sequencing for use in computer-aided process planning // Computers & Industrial Engineering. – 1996. – Vol. 30 (4). – P. 999–1013. – DOI: 10.1016/0360-8352(96)00048-4. 30. Indrajit M., Pradip K.R. A review of optimization techniques in metal cutting processes // Computers & Industrial Engineering. – 2006. – Vol. 50 (1–2). – P. 15–34. – DOI: 10.1016/j.cie.2005.10.001. 31. Usubamatov R., Ismail K.A., Sah J.M. Mathematical models for productivity and availability of automated lines // The International Journal of Advanced Manufacturing Technology. – 2013. – Vol. 66. – P. 59– 69. – DOI: 10.1007/s00170-012-4305-y. 32. Ozturk E., Comak A., Budak E. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes // Journal of Sound and Vibration. – 2016. – Vol. 360. – P. 17–30. – DOI: 10.1016/j. jsv.2015.09.009. 33. Юсубов Н.Д., Аббасова Х.М. Полнофакторная матричная модель точности выполняемых размеров на многоцелевых станках с ЧПУ // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 4. – С. 6–20. – DOI: 10.17212/19946309-2021-23.4-6-20. 34. Kurt A., Sürücüler S., Kirik A. Developing a mathematical model for the cutting forces prediction depending on the cutting parameters // Technology. – 2010. – Vol. 13 (1). – P. 23–30. 35. Кошин А.А. Теория точности и оптимизация многоинструментной токарной обработки: дис. … д-ра техн. наук: 05.02.08. – Челябинск, 1997. – 290 с. 36. Кошин А.А. Обработка на токарных станках: наладка, режимы резания: справочник. – Челябинск: Сити-Принт, 2012. – 744 с.
RkJQdWJsaXNoZXIy MTk0ODM1