OBRABOTKAMETALLOV Vol. 26 No. 4 2024 110 EQUIPMENT. INSTRUMENTS 4. Tomiyama T., Gu P., Jin Y., Lutters D., Kind Ch., Kimura F. Design methodologies: industrial and educational applications. CIRP Annals – Manufacturing Technology, 2009, vol. 58 (2), pp. 543–565. DOI: 10.1016/j. cirp.2009.09.003. 5. Shinno H., Yoshioka H., Sawano H. A frame-work for systematizing machine tool engineering. International Journal of Automation Technology, 2013, vol. 7 (6), pp. 760–768. DOI: 10.20965/ijat.2013.p0760. 6. Usubamatov R., Harun A., Sanuddin A. Optimisation of machining parameters by criterion of maximum productivity. International Journal of Production Research, 2014, vol. 52 (10), pp. 2946–2953. DOI: 10.1080/0020 7543.2013.857440. 7. Usubamatov R., Zain Z., Sin T. Optimization of multi-tool machining processes with simultaneous action. International Journal of Advanced and Manufacturing Technology, 2016, vol. 82, pp. 1227–1239. DOI: 10.1007/ s00170-015-6920-x. 8. Levin G., Rozin B., Dolgui A. Optimization of multi-tool cutting modes in multi-item batch manufacturing system. IFAC Proceedings Volumes, 2013, vol. 46 (9), pp. 766–771. DOI: 10.3182/20130619-3-RU-3018.00357. 9. Cakir M.C., Gurarda A. Optimization of machining conditions for multi-tool milling operations. International Journal of Production Research, 2000, vol. 38 (15), pp. 3537–3552. DOI: 10.1080/002075400422789. 10. Dolgui A., Levin G., Rozin B. Optimisation of the aggregation and execution rates for intersecting operation sets: an example of machining process design. International Journal of Production Research, 2000, vol. 58 (9), pp. 2658–2676. DOI: 10.1080/00207543.2019.1629668. 11. Daoud Z., Purcheck G. Multi-tool job sequencing for tool-change reduction. International Journal of Production Research, 1981, vol. 19 (4), pp. 425–435. DOI: 10.1080/00207548108956670. 12. Torres W., Brand M., Serebrenik A. A systematic literature review of cross-domain model consistency checking by model management tools. Software and Systems Modeling, 2021, vol. 20 (3), pp. 897–916. DOI: 10.1109/ SYSCON.2017.7934729. 13. Yusubov N., Abbasova H. Models for machining accuracy in multi-tool adjustment. International Journal of Automotive and Mechanical Engineering, 2020, vol. 17 (3), pp. 8067–8085. DOI: 10.15282/ijame.17.3.2020.01.0605. 14. Kalidasan R., Senthilvelan S., Dixit U.S., Vaibhav J. Double tool turning: machining accuracy, cutting tool wear and chip morphology. International Journal of Precision Technology, 2016, vol. 6 (2), p. 142. DOI: 10.1504/ IJPTECH.2016.078189. 15. Brecher C., Epple A., Neues S., Fey M. Optimal process parameters for parallel turning operations on shared cutting surfaces. International Journal of Machine Tools and Manufacture, 2015, vol. 95, pp. 13–19. DOI: 10.1016/j. ijmachtools.2015.05.003. 16. Fu R., Curley P., Higgins C., Kilic Z., Sun D., Murphy A., Jin Y. Double-sided milling of thin-walled parts by dual collaborative parallel kinematic machines. Journal of Materials Processing Technology, 2022, vol. 299, p. 117395. DOI: 10.1016/j.jmatprotec.2021.117395. 17. Zhao X., Tao B., Yang L., Ding H. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces. Robotics and Computer-Integrated Manufacturing, 2020, vol. 63, p. 101889. DOI: 10.1016/j. rcim.2019.101889. 18. Yan Y., Xu J., Wiercigroch M. Stability and dynamics of parallel plunge grinding. International Journal of Advanced and Manufacturing Technology, 2018, vol. 99, pp. 881–895. DOI: 10.1007/s00170-018-2440-9. 19. Yamato S., Nakanishi K., Suzuki N. Development of automatic chatter suppression system in parallel milling by real-time spindle speed control with observer-based chatter monitoring. International Journal of Precision Engineering and Manufacturing, 2021, vol. 22, pp. 227–240. DOI: 10.1007/s12541-021-00469-2. 20. Weck M., Staimer D. Parallel kinematic machine tools – current state and future potentials. CIRP Annals – Manufacturing Technology, 2002, vol. 51 (2), pp. 671–683. DOI: 10.1016/S0007-8506(07)61706-5. 21. Azvar M., Budak E. Multi-dimensional chatter stability for enhanced productivity in diff erent parallel turning strategies. International Journal of Machine Tools and Manufacture, 2017, vol. 123, pp. 116–128. DOI: 10.1016/j. ijmachtools.2017.08.005. 22. Kanakaraju V., Hassan F., Kalidasan R. Numerical analysis of surface integrity in parallel turning. Part A: Infl uence of cutting tool nose radius. Materials Today: Proceedings, 2021, vol. 38 (1), pp. 186–190. DOI: 10.1016/j. matpr.2020.06.511. 23. Hassan F., Kanakaraju V., Kalidasan R., Norkey G. Numerical analysis of surface integrity in parallel turning. Part B: Infl uence of cutting tool chamfer angle and chamfer width. Materials Today: Proceedings, 2021, vol. 44 (1), pp. 266–270. DOI: 10.1016/j.matpr.2020.09.464. 24. Brecher C., Trofi mov Y., Bäumler S. Holistic modelling of process machine interactions in parallel milling. CIRP Annals – Manufacturing Technology, 2011, vol. 60 (1), pp. 387–390. DOI: 10.1016/j.cirp.2011.03.025.
RkJQdWJsaXNoZXIy MTk0ODM1