Obrabotka Metallov 2024 Vol. 26 No. 4

OBRABOTKAMETALLOV Vol. 26 No. 4 2024 111 EQUIPMENT. INSTRUMENTS 25. Yusubov N.D., Abbasova H.M., Khankishiyev İ.A. Entwicklung einer projektierungstheorie für die mehrwerkzeugbearbeitung mit den möglichkeiten der modernen CNC-werkzeugmaschinen. Forschung im Ingenieurwesen, 2021, vol. 85, pp. 661–678. DOI: 10.1007/s10010-021-00478-7. 26. Yusubov N.D. Matrix models of the accuracy in multitool two-support setup. Russian Engineering Research, 2009, vol. 29, pp. 268–271. DOI: 10.3103/S1068798X09030125. 27. Bogatenkov S.A., Sazonova N.S., Yusubov N.D., Mammadov P.V., Bazhenov R.I. Increasing the productivity of multitool machining on automated lathes by optimizing the machining plan. Russian Engineering Research, 2021, vol. 41 (11), pp. 1071–1074. DOI: 10.3103/S1068798X21110046. 28. Bogatenkov S.A., Sazonova N.S., Guzeev V.I., Yusubov N.D., Abbasova G.M. Increasing the productivity of multitool machining on automated lathes by optimizing the tool positions. Russian Engineering Research, 2021, vol. 41 (11), pp. 1075–1079. DOI: 10.3103/S1068798X21110058. 29. Usher J.M., Bowden R.O. The application of genetic algorithms to operation sequencing for use in computeraided process planning. Computers & Industrial Engineering, 1996, vol. 30 (4), pp. 999–1013. DOI: 10.1016/03608352(96)00048-4. 30. Indrajit M., Pradip K.R. A review of optimization techniques in metal cutting processes. Computers & Industrial Engineering, 2006, vol. 50 (1–2), pp. 15–34. DOI: 10.1016/j.cie.2005.10.001. 31. Usubamatov R., Ismail K.A., Sah J.M. Mathematical models for productivity and availability of automated lines. The International Journal of Advanced Manufacturing Technology, 2013, vol. 66, pp. 59–69. DOI: 10.1007/ s00170-012-4305-y. 32. Ozturk E., Comak A., Budak E. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes. Journal of Sound and Vibration, 2016, vol. 360, pp. 17–30. DOI: 10.1016/j.jsv.2015.09.009. 33. Yusubov N., Abbasova H. Full-factor matrix model of accuracy of dimensions performed on multi-purpose CNC machines. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2021, vol. 23 (4), pp. 6–20. DOI: 10.17212/1994-6309-2021-23.4-6-20. 34. Kurt A., Sürücüler S., Kirik A. Developing a mathematical model for the cutting forces prediction depending on the cutting parameters. Technology, 2010, vol. 13 (1), pp. 23–30. 35. Koshin A.A. Teoriya tochnosti i optimizatsiya mnogoinstrumentnoi tokarnoi obrabotki. Diss. dokt. tekhn. nauk [Accuracy theory and optimization of multi-tool turning. Dr. eng. sci. diss.]. Chelyabinsk, 1997. 290 p. (In Russian). 36. Koshin A.A. Obrabotka na tokarnykh stankakh: naladka, rezhimy rezaniya [Processing on lathes: adjustment, cutting conditions]. Handbook. Chelyabinsk, Siti-Print Publ., 2012. 744 p. 37. Koshin A.A., Yusubov N.D. Elementy matrichnoi teorii tochnosti mnogoinstrumentnoi obrabotki v prostranstvennykh naladkakh [Elements of matrix theory of multitool processing accuracy in three-dimensional setups]. Vestnik mashinostroeniya = Russian Engineering Research, 2013, no. 9, pp. 13–17. (In Russian). 38. Yusubov N.D., Abbasova Kh.M., Dadashov R.E. [Models of cutting forces during mechanical machining on modern machines of turning group]. Vserossiiskii forum molodykh issledovatelei – 2023 [All-Russian forum of young researchers – 2023]. Petrozavodsk, 2023, pp. 236–246. (In Russian). Confl icts of Interest The authors declare no confl ict of interest. © 2024 The Authors. Published by Novosibirsk State Technical University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0).

RkJQdWJsaXNoZXIy MTk0ODM1