Obrabotka Metallov 2024 Vol. 26 No. 4

ОБРАБОТКА МЕТАЛЛОВ Том 26 № 4 2024 150 ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ Конфликт интересов Авторы заявляют об отсутствии конфликта интересов. © 2024 Авторы. Издательство Новосибирского государственного технического университета. Эта статья доступна по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (https://creativecommons.org/licenses/by/4.0). 10. One-step volumetric additive manufacturing of complexpolymer structures /M. Shusteff ,A.E.M. Browar, B.E. Kelly, J. Henriksson, T.H. Weisgraber, R.M. Panas, N.X. Fang, C.M. Spadaccini // Science Advances. – 2017. – Vol. 3 (12). – P. 1–7. – DOI: 10.1126/sciadv. aao5496. 11. Layerless fabrication with continuous liquidinterface production / R. Janusziewicza, J.R. Tumblestonb, A.L. Quintanillac, S.J. Mechama, J.M. DeSimonea // Proceedings of the National Academy of Sciences. – 2016. – Vol. 113 (42). – P. 1–6. – DOI: 10.1073/ pnas.1605271113. 12. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fl uidic control / D. Han, C. Yang, N.X. Fangb, H. Lee // Additive Manufacturing. – 2019. – Vol. 27 (17). – P. 606–615. – DOI: 10.1016/j.addma.2019.03.031. 13. Jigang H., Qin Q., Jie W. A review of stereolithography: processes and systems // Processes. – 2020. – Vol. 8 (9). – P. 1–16. – DOI: 10.3390/pr8091138. 14. Polymers for 3D printing and customized additive manufacturing / S.C. Ligon, R. Liska, J. Stampfl , M. Gurr, R. Mülhaupt // Chemical Reviews. – 2017. – Vol. 117 (15). – DOI: 10.1021/acs.chemrev.7b00074. 15. Stansbury J.W., Idacavage M.J. 3D printing with polymers: challenges among expanding options and opportunities // Dental Materials. – 2016. – Vol. 32 (1). – P. 54–64. – DOI: 10.1016/j.dental.2015.09.018. 16. 3D printing of polymer matrix composites: a review and prospective / X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui // Composites, Part B: Engineering. – 2017. – Vol. 110. – P. 442–458. – DOI: 10.1016/j. compositesb.2016.11.034. 17. Golabczak A., Konstantynowicz A., Golabczak M. Mathematical modelling of the physical phenomena in the interelectrode gap of the EDM process by means of cellular automata and fi eld distribution equations // Experimental and Numerical Investigation of Advanced Materials and Structures. – Cham: Springer, 2013. – P. 169–184. – DOI: 10.1007/978-3-319-00506-5_11. 18. Quantitative analysis of bubble size and electrodes gap at diff erent dielectric conditions in powder mixed EDM process / A. Kumar, A. Mandal, A.R. Dixit, D.K. Mandal // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 4 (1). – P. 1–11. – DOI: 10.1007/s00170-020-05189-x. 19. Using rapid prototyping technologies for creating implantswithcellular structure / P.N.Kilina,V.P.Vasilyuk, E.A. Morozov, A.M. Khanov, L.D. Sirotenko // Biosciences Biotechnology Research Asia. – 2015. – Vol. 12 (2). – P. 1691–1698. – DOI: 10.13005/bbra/1832. 20. Real-space wigner-seitz cells imaging of potassium on graphite via elastic atomic manipulation / F. Yin, P. Koskinen, S. Kulju, J. Akola, R.E. Palmer // Scientifi c Reports. – 2015. – Vol. 5 (1). – P. 1–5. – DOI: 10.1038/srep08276. 21. Cho Y., Lee I., Cho D.W. Laser scanning path generation considering photopolymer solidifi cation in micro-stereolithography // Microsystem Technologies. – 2005. – Vol. 11 (2). – P. 158–167. – DOI: 10.1007/ s00542-004-0468-2.

RkJQdWJsaXNoZXIy MTk0ODM1