Obrabotka Metallov 2024 Vol. 26 No. 4

ОБРАБОТКА МЕТАЛЛОВ Том 26 № 4 2024 172 МАТЕРИАЛОВЕДЕНИЕ A.X. Guo, S. Zhan, C.T. Liu, S.C. Cao // Journal of Materials Science & Technology. – 2023. – Vol. 142. – P. 196–215. – DOI: 10.1016/j.jmst.2022.08.046. 45. Haché M.J., Zou Y., Erb U. Thermal stability of electrodeposited nanostructured high-entropy alloys // Surface and Coatings Technology. – 2024. – Vol. 474. – P. 130719. – DOI: 10.1016/j.surfcoat.2024.130719. 46. Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy / V. Shivam, Y. Shadangi, J. Basu, N.K. Mukhopadhyay // Journal of Materials Research. – 2019. – Vol. 34. – P. 787–795. – DOI: 10.1557/jmr.2019.5. 47. Hardening and thermal stability of a nanocrystalline CoCrFeNiMnTi high-entropy alloy processed by high-pressure torsion / H. Shahmir, M. Nili-Ahmadabadi, A. Shafi e, T. Langdon // IOP Conference Series: Materials Science and Engineering. – 2017. – Vol. 194. – DOI: 10.1088/1757-899X/194/1/012017. 48. Влияние замены молибдена на ванадий на склонность к аморфизации, структуру и теплофизические свойства высокоэнтропийных сплавов системы Fe-Co-Ni-Cr-(Mo,V)-B / А.И. Базлов, И.В. Строчко, Е.Н. Занаева, Е.В. Убивовка, М.С. Пархоменко, Д.А. Милькова, В.В. Брюханова // Металлург. – 2023. – № 11. – С. 86–92. – DOI: 10.52351/002 60827_2023_11_86. 49. Role of aging temperature on thermal stability of Co-free Cr0.8FeMn1.3Ni1.3 high-entropy alloy: decomposition and embrittlement at intermediate temperatures / H. Sun, T. Liu, H. Oka, N. Hashimoto, Y. Cao, R. Luo // Materials Characterization. – 2024. – Vol. 210. – P. 113804. – DOI: 10.1016/j.matchar.2024.113804. 50. A novel lightweight refractory high-entropy alloy with high specifi c strength and intrinsic deformability / X. Liu, Z. Bai, X. Ding, J. Yao, L. Wang, Y. Su, Z. Fan, J. Guo // Materials Letters. – 2020. – Vol. 287. – P. 129255. – DOI: 10.1016/j.matlet.2020.129255. 51. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite / Q. Wei, G. Luo, R. Tu, J. Zhang, Q. Shen, Y. Cui, Y. Gui, A. Chiba // Journal of Materials Science & Technology. – 2021. – Vol. 84. – P. 1–9. – DOI: 10.1016/j. jmst.2020.12.015. 52. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process / H. Zhang, J. Cai, J. Geng, X. Sun, Y. Zhao, X. Guo, D. Li // International Journal of Refractory Metals and Hard Materials. – 2023. – Vol. 112. – DOI: 10.1016/j.ijrmhm.2023.106163. 53. Высокоэнтропийный сплав на основе системы Co-Mo-Nb-Hf с высокой прочностью при 1000 °C / Е.С. Панина, Н.Ю. Юрченко, А. Тожибаев, С.В. Жеребцов, Н.Д. Степанов // Материаловедение, формообразующие технологии и оборудование 2022 (ICMSSTE 2022): материалы Международной научно-практической конференции. – Симферополь, 2022. – С. 128–134. – EDN ZCNRGA. 54. Gradient cell-structured high-entropy alloy with exceptional strength and ductility / Q. Pan, L. Zhang, R. Feng, Q. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, L. Lu // Science. – 2021. – Vol. 374. – P. 984– 989. – DOI: 10.1126/science.abj8114. 55. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique / B. Zhang, J. Chen, P. Wang, B. Sun, Y. Cao // Journal of Materials Science & Technology. – 2021. – Vol. 111. – P. 111–119. – DOI: 10.1016/j.jmst.2021.09.043. 56. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity / Y. Chen, Y. Fang, R. Wang, Y. Tang, S. Bai, Q. Yu // Journal of Materials Science & Technology. – 2023. – Vol. 141. – P. 149–154. – DOI: 10.1016/j.jmst.2022.09.018. 57. Design and coherent strengthening of ultra-high strength refractory high entropy alloys based on laser additive manufacturing / J. Cai, H. Zhang, L. Wang, X. Sun, X. Xu, X. Guo, D. Li // SSRN Electronic Journal. – 2023. – DOI: 10.2139/ssrn.4469753. 58. Jiang D., Xie L., Wang L. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys // Journal of Materials Research and Technology. – 2023. – Vol. 26. – P. 1341. – DOI: 10.1016/j.jmrt.2023.07.233. 59. Вектор развития улучшения свойств ВЭС Кантора / В.Е. Громов, С.В. Коновалов, С. Чен, М.О. Ефимов, И.А. Панченко, В.В. Шляров // Вестник Сибирского государственного индустриального университета. – 2023. – № 2 (44). – С. 3–12. – DOI: 10.57070/2304-4497-2023-2(44)-3-12. – EDN ICZXYP. 60. Machine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-VZr system / D. Klimenko, N. Stepanov, J. Li, Q. Fang, S. Zherebtsov // Materials. – 2021. – Vol. 14. – P. 7213. – DOI: 10.3390/ma14237213. 61. Yield strength prediction of high-entropy alloys using machine learning / U. Bhandari, R. Rafi , C. Zhang, S. Yang // Materials Today Communications. – 2020. – Vol. 26. – P. 101871. – DOI: 10.1016/j. mtcomm.2020.101871. 62. Prediction of strength characteristics of high-entropy alloys Al-Cr-Nb-Ti-V-Zr systems / D.N. Klimenko, N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov // Materials Today: Proceedings. – 2021. – Vol. 38. – P. 1535. – DOI: 10.1016/j.matpr.2020.08.145. 63. Li J., Fang Q. Investigation into plastic deformation and machining-induced subsurface damage of

RkJQdWJsaXNoZXIy MTk0ODM1